{"title":"Itaconic acid/cellulose-based hydrogels with fire-resistant and anti-freezing properties via vat photopolymerization 3D printing.","authors":"Xiaoling Zuo, Runhao Yu, Rong Li, Mengping Xu, Chuan Liu, Kangan Hao, Ying Zhou, Anrong Huang, Chong Wu, Zhonglin Cao, Jianbing Guo, Yinye Yang","doi":"10.1016/j.ijbiomac.2024.137911","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogel-born materials have garnered significant interest due to their inherent flame retardant properties and eco-friendly characteristics. In light of the diminishing petroleum reserves and the escalating environmental challenges, there is an urgent impetus to exploit high-value applications of naturally occurring resources and to advance research in sustainable manufacturing technologies. In this vein, we describe an innovative and sustainable methodology for the development and production of flame-retardant hydrogels. This approach perfectly integrates renewable itaconic acid and cellulose derivatives with rapid vat photopolymerization (VP) 3D printing technology, which affords a green and efficient route for materials processing. Specifically, the biomass-based ink formulated for 3D printing demonstrates excellent visible-light curing properties, achieving a maximum double-bond conversion of 45.3 % within 10 min of exposure to visible-light LED under ambient conditions. Moreover, the resultant 3D-printed biomass-based hydrogels exhibit commendable flame-retardant performance, as evidenced by a V-0 flammability rating and a Limiting Oxygen Index (LOI) value of 60.2 %. They also possess desirable mechanical attributes (95.2 kPa) and exceptional thermal stability, enduring high temperatures for up to 12 min. Notably, these hydrogels exhibit remarkable freeze tolerance, maintaining their functionality even at profoundly low temperatures. This study demonstrates a novel strategy for the design and production of flame-retardant materials, contributing to the pursuit of green sustainability.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137911"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137911","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogel-born materials have garnered significant interest due to their inherent flame retardant properties and eco-friendly characteristics. In light of the diminishing petroleum reserves and the escalating environmental challenges, there is an urgent impetus to exploit high-value applications of naturally occurring resources and to advance research in sustainable manufacturing technologies. In this vein, we describe an innovative and sustainable methodology for the development and production of flame-retardant hydrogels. This approach perfectly integrates renewable itaconic acid and cellulose derivatives with rapid vat photopolymerization (VP) 3D printing technology, which affords a green and efficient route for materials processing. Specifically, the biomass-based ink formulated for 3D printing demonstrates excellent visible-light curing properties, achieving a maximum double-bond conversion of 45.3 % within 10 min of exposure to visible-light LED under ambient conditions. Moreover, the resultant 3D-printed biomass-based hydrogels exhibit commendable flame-retardant performance, as evidenced by a V-0 flammability rating and a Limiting Oxygen Index (LOI) value of 60.2 %. They also possess desirable mechanical attributes (95.2 kPa) and exceptional thermal stability, enduring high temperatures for up to 12 min. Notably, these hydrogels exhibit remarkable freeze tolerance, maintaining their functionality even at profoundly low temperatures. This study demonstrates a novel strategy for the design and production of flame-retardant materials, contributing to the pursuit of green sustainability.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.