{"title":"Double-layer microencapsulation of ammonium polyphosphate and its enhancement on the hydrophobicity and flame retardancy of cellulose paper.","authors":"Kexin Liu, Zhangyi Wang, Ruidong Pan, Ling Xu, Feng Zhu, Yu Zhang, Yu Meng, Xinxing Xia","doi":"10.1016/j.ijbiomac.2024.137924","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose paper is a flammable and hygroscopic material, which limits its application. In this paper, melamine-formaldehyde resin (MF) and silane coupling agents were used to microencapsulate ammonium polyphosphate (Si@MFAPP) in turn and added to the fibers suspension to prepare hydrophobic and flame-retardant cellulose paper. It was found that the surface of the ammonium polyphosphate (APP) was smooth with the water solubility of 0.24 g/100 mL. After microencapsulation with MF, the surface of MFAPP became rough, and the solubility was reduced to 0.1 g/100 mL. When further encapsulation with polysiloxanes, the surface showed significantly higher roughness, and a lotus leaf-like microspherical structure was formed. Specifically, its solubility decreased to 0.04 g/100 mL. In addition, the residual char weight of Si@MFAPP at 800 °C was increased from 25.27 % to 38.56 %. The water contact angle (WCA) of MFAPP/Pulp increased from 84.23° to 90.78°, and the limiting oxygen index (LOI) increased from 31.8 % to 34.1 %, meaning that the flame retardancy was obviously raised. The WCA of Si@MFAPP/Pulp enhanced to 96.45°, and the LOI was 34.5 %, meaning that the hydrophobicity was further raised. Therefore, Si@MFAPP significantly improved the flame-retardancy and hydrophobicity of the cellulose paper.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137924"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137924","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose paper is a flammable and hygroscopic material, which limits its application. In this paper, melamine-formaldehyde resin (MF) and silane coupling agents were used to microencapsulate ammonium polyphosphate (Si@MFAPP) in turn and added to the fibers suspension to prepare hydrophobic and flame-retardant cellulose paper. It was found that the surface of the ammonium polyphosphate (APP) was smooth with the water solubility of 0.24 g/100 mL. After microencapsulation with MF, the surface of MFAPP became rough, and the solubility was reduced to 0.1 g/100 mL. When further encapsulation with polysiloxanes, the surface showed significantly higher roughness, and a lotus leaf-like microspherical structure was formed. Specifically, its solubility decreased to 0.04 g/100 mL. In addition, the residual char weight of Si@MFAPP at 800 °C was increased from 25.27 % to 38.56 %. The water contact angle (WCA) of MFAPP/Pulp increased from 84.23° to 90.78°, and the limiting oxygen index (LOI) increased from 31.8 % to 34.1 %, meaning that the flame retardancy was obviously raised. The WCA of Si@MFAPP/Pulp enhanced to 96.45°, and the LOI was 34.5 %, meaning that the hydrophobicity was further raised. Therefore, Si@MFAPP significantly improved the flame-retardancy and hydrophobicity of the cellulose paper.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.