{"title":"Harnessing the value of fertility biomarkers in bull sperm for buck sperm","authors":"Mustafa Bodu , Mustafa Hitit , Erdogan Memili","doi":"10.1016/j.anireprosci.2024.107643","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and sustainable reproduction and production of cattle and goats are vitally important for ensuring global food security. There is a need for potent biomarkers to accurately evaluate semen quality and predict male fertility. Although there is a reasonable set of biomarkers identified in bull sperm, there is a significant lack of such information in buck sperm along with a lack of transfer of proven technologies in goat reproductive biotechnology. These gaps are important problems because they are preventing advances in fundamental andrology and applied science of goat production. Both cattle and goats are ruminants, and they share significant similarities in their genetics and physiology although subtle differences do exist. This review harnesses the power of utilizing the knowledge developed in bull sperm to generate information on buck sperm fertility markers. These include genomic, functional genomic, epigenomic fertility markers. Revealing molecular underpinnings of such similarity and diversity using systems biology is expected to advance both fundamental and applied andrology of livestock and endangered species.</div></div>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":"272 ","pages":"Article 107643"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378432024002434","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and sustainable reproduction and production of cattle and goats are vitally important for ensuring global food security. There is a need for potent biomarkers to accurately evaluate semen quality and predict male fertility. Although there is a reasonable set of biomarkers identified in bull sperm, there is a significant lack of such information in buck sperm along with a lack of transfer of proven technologies in goat reproductive biotechnology. These gaps are important problems because they are preventing advances in fundamental andrology and applied science of goat production. Both cattle and goats are ruminants, and they share significant similarities in their genetics and physiology although subtle differences do exist. This review harnesses the power of utilizing the knowledge developed in bull sperm to generate information on buck sperm fertility markers. These include genomic, functional genomic, epigenomic fertility markers. Revealing molecular underpinnings of such similarity and diversity using systems biology is expected to advance both fundamental and applied andrology of livestock and endangered species.
期刊介绍:
Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction.
The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques.
The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.