Juliana Dias Corpa Tardelli, Lucas Barcelos Otani, Rodolfo Lisboa Batalha, Fernanda Alves, Marcelo A Pereira-da-Siva, Vanderlei Salvador Bagnato, Piter Gargarella, Claudemiro Bolfarini, Andréa Cândido Dos Reis
{"title":"Atomic Interaction S. aureus/Machined and Additive Manufacturing Ti-6Al-4V and Ti-35Nb-7Zr-5Ta Disks for Dental Implants.","authors":"Juliana Dias Corpa Tardelli, Lucas Barcelos Otani, Rodolfo Lisboa Batalha, Fernanda Alves, Marcelo A Pereira-da-Siva, Vanderlei Salvador Bagnato, Piter Gargarella, Claudemiro Bolfarini, Andréa Cândido Dos Reis","doi":"10.1002/jbm.b.35508","DOIUrl":null,"url":null,"abstract":"<p><p>The adhesion strength of a bacterial strain on a substrate influences colonization and biofilm development, so the biomolecular analysis of this interaction is a step that allows insights into the development of antifouling surfaces. As peri-implantitis is the main cause of failure of implant-supported oral rehabilitations and the dental literature presents gaps in the atomic bacteria/surface interaction, this study aimed to correlate the qualitative variation of roughness, wettability, chemical composition, and electrical potential of Ti-6Al-4V and Ti-35Nb-7Zr-5Ta (TNZT) disks obtained by machining (M) and additive manufacturing (AM) on the colonization and adhesion strength of S. aureus quantified by atomic force microscopy (AFM). The samples were evaluated for roughness, electrical potential, and S. aureus colonization and adhesion strength by specific methods in the AFM with subsequent analysis in the NanoScope software analysis, wettability by sessile drop method, and chemical composition by energy dispersive x-ray spectroscopy (EDX). Qualitative data were correlated with bacterial adhesion strength. The greater adhesion strength of S. aureus was observed in descending order for TNZT AM, TNZT M, Ti-6Al-4V AM, and Ti-6Al-4V M. This experimental in vitro study allowed us to conclude that for the evaluated groups, the strength adhesion of S. aureus showed a linear relationship with roughness, and nonlinear for wettability, electrical potential, and S. aureus colonization on the surfaces evaluated. As for the two variation factors, type of alloy and manufacturing method, those that promoted the lowest bacterial adhesion strength were Ti-6Al-4V and M, possibly attributed to the synergistic modification of the evaluated surface properties. Thus, this study suggests S. aureus preferences for rough, hydrophilic surfaces with a greater electrical potential difference.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 12","pages":"e35508"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jbm.b.35508","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The adhesion strength of a bacterial strain on a substrate influences colonization and biofilm development, so the biomolecular analysis of this interaction is a step that allows insights into the development of antifouling surfaces. As peri-implantitis is the main cause of failure of implant-supported oral rehabilitations and the dental literature presents gaps in the atomic bacteria/surface interaction, this study aimed to correlate the qualitative variation of roughness, wettability, chemical composition, and electrical potential of Ti-6Al-4V and Ti-35Nb-7Zr-5Ta (TNZT) disks obtained by machining (M) and additive manufacturing (AM) on the colonization and adhesion strength of S. aureus quantified by atomic force microscopy (AFM). The samples were evaluated for roughness, electrical potential, and S. aureus colonization and adhesion strength by specific methods in the AFM with subsequent analysis in the NanoScope software analysis, wettability by sessile drop method, and chemical composition by energy dispersive x-ray spectroscopy (EDX). Qualitative data were correlated with bacterial adhesion strength. The greater adhesion strength of S. aureus was observed in descending order for TNZT AM, TNZT M, Ti-6Al-4V AM, and Ti-6Al-4V M. This experimental in vitro study allowed us to conclude that for the evaluated groups, the strength adhesion of S. aureus showed a linear relationship with roughness, and nonlinear for wettability, electrical potential, and S. aureus colonization on the surfaces evaluated. As for the two variation factors, type of alloy and manufacturing method, those that promoted the lowest bacterial adhesion strength were Ti-6Al-4V and M, possibly attributed to the synergistic modification of the evaluated surface properties. Thus, this study suggests S. aureus preferences for rough, hydrophilic surfaces with a greater electrical potential difference.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.