Many-body physics of ultracold alkaline-earth atoms with SU(N)-symmetric interactions.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-12-13 DOI:10.1088/1361-648X/ad9658
Eduardo Ibarra-García-Padilla, Sayan Choudhury
{"title":"Many-body physics of ultracold alkaline-earth atoms with SU(<i>N</i>)-symmetric interactions.","authors":"Eduardo Ibarra-García-Padilla, Sayan Choudhury","doi":"10.1088/1361-648X/ad9658","DOIUrl":null,"url":null,"abstract":"<p><p>Symmetries play a crucial role in understanding phases of matter and the transitions between them. Theoretical investigations of quantum models with SU(<i>N</i>) symmetry have provided important insights into many-body phenomena. However, these models have generally remained a theoretical idealization, since it is very difficult to exactly realize the SU(<i>N</i>) symmetry in conventional quantum materials for large<i>N</i>. Intriguingly however, in recent years, ultracold alkaline-earth-atom (AEA) quantum simulators have paved the path to realize SU(<i>N</i>)-symmetric many-body models, where<i>N</i>is tunable and can be as large as 10. This symmetry emerges due to the closed shell structure of AEAs, thereby leading to a perfect decoupling of the electronic degrees of freedom from the nuclear spin. In this work, we provide a systematic review of recent theoretical and experimental work on the many-body physics of these systems. We first discuss the thermodynamic properties and collective modes of trapped Fermi gases, highlighting the enhanced interaction effects that appear as<i>N</i>increases. We then discuss the properties of the SU(<i>N</i>) Fermi-Hubbard model, focusing on some of the major experimental achievements in this area. We conclude with a compendium highlighting some of the significant theoretical progress on SU(<i>N</i>) lattice models and a discussion of some exciting directions for future research.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9658","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetries play a crucial role in understanding phases of matter and the transitions between them. Theoretical investigations of quantum models with SU(N) symmetry have provided important insights into many-body phenomena. However, these models have generally remained a theoretical idealization, since it is very difficult to exactly realize the SU(N) symmetry in conventional quantum materials for largeN. Intriguingly however, in recent years, ultracold alkaline-earth-atom (AEA) quantum simulators have paved the path to realize SU(N)-symmetric many-body models, whereNis tunable and can be as large as 10. This symmetry emerges due to the closed shell structure of AEAs, thereby leading to a perfect decoupling of the electronic degrees of freedom from the nuclear spin. In this work, we provide a systematic review of recent theoretical and experimental work on the many-body physics of these systems. We first discuss the thermodynamic properties and collective modes of trapped Fermi gases, highlighting the enhanced interaction effects that appear asNincreases. We then discuss the properties of the SU(N) Fermi-Hubbard model, focusing on some of the major experimental achievements in this area. We conclude with a compendium highlighting some of the significant theoretical progress on SU(N) lattice models and a discussion of some exciting directions for future research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有 SU(N)-symmetric 相互作用的超冷碱土原子的多体物理学。
对称性在理解物质的相位以及它们之间的转换方面起着至关重要的作用。对具有 SU(N) 对称性的量子模型的理论研究为多体现象提供了重要见解。然而,这些模型通常仍是理论上的理想化,因为在传统量子材料中,要精确实现大 N 的 SU(N) 对称性非常困难。然而,有趣的是,近年来,超冷碱土原子(AEA)量子模拟器为实现 SU(N) 对称多体模型铺平了道路,其中 N 是可调的,可以大到 10。这种对称性的出现是由于 AEA 的闭壳结构,从而导致了电子自由度与核自旋的完美解耦。在这项工作中,我们系统地回顾了最近有关这些系统多体物理学的理论和实验工作。我们首先讨论了受困费米气体的热力学性质和集体模式,强调了随着 N 的增加而出现的相互作用增强效应。然后,我们讨论了 SU(N) 费米-哈伯德模型的特性,并重点介绍了该领域的一些重要实验成果。最后,我们汇编了SU(N) 晶格模型的一些重要理论进展,并讨论了未来研究的一些令人兴奋的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Drastic enhancement of electronic correlations induced by hydrogen insertion in the cerium intermetallic compound CeFeSi. Effect of Fe doping on the electronic properties of CoSn Kagome semimetal. A remarkable match of optical response in the amorphous-crystalline and zinc blende-rock salt phase pairs of GeTe. Suppression of hyperuniformity in hydrodynamic scalar active field theories. Recent Developments on 2D-Materials for Gas Sensing Application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1