Cong Lei, Xilong Li, Wenjia Li, Zihan Chen, Simiao Liu, Bo Cheng, Yili Hu, Qitao Song, Yahong Qiu, Yilan Zhou, Xiangbing Meng, Hong Yu, Wen Zhou, Xing Chen, Jiayang Li
{"title":"Chemical glycoproteomic profiling in rice seedlings reveals N-glycosylation in the ERAD-L machinery.","authors":"Cong Lei, Xilong Li, Wenjia Li, Zihan Chen, Simiao Liu, Bo Cheng, Yili Hu, Qitao Song, Yahong Qiu, Yilan Zhou, Xiangbing Meng, Hong Yu, Wen Zhou, Xing Chen, Jiayang Li","doi":"10.1016/j.mcpro.2024.100883","DOIUrl":null,"url":null,"abstract":"<p><p>As a ubiquitous and essential posttranslational modification occurring in both plants and animals, protein N-linked glycosylation regulates various important biological processes. Unlike the well-studied animal N-glycoproteomes, the landscape of rice N-glycoproteome remains largely unexplored. Here, by developing a chemical glycoproteomic strategy based on metabolic glycan labeling (MGL), we report a comprehensive profiling of the N-glycoproteome in rice seedlings. The rice seedlings are incubated with N-azidoacetylgalactosamine (GalNAz) - a monosaccharide analog containing a bioorthogonal functional group - to metabolically label N-glycans, followed by conjugation with an affinity probe via click chemistry for enrichment of the N-glycoproteins. Subsequent mass spectrometry analyses identify a total of 403 N-glycosylation sites and 673 N-glycosylated proteins, which are involved in various important biological processes. In particular, the core components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery are N-glycosylated, and the N-glycosylation is important for the ERAD-L function. This work not only provides an invaluable resource for studying rice N-glycosylation, but also demonstrates the applicability of MGL in glycoproteomic profiling for crop species.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100883"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100883","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
As a ubiquitous and essential posttranslational modification occurring in both plants and animals, protein N-linked glycosylation regulates various important biological processes. Unlike the well-studied animal N-glycoproteomes, the landscape of rice N-glycoproteome remains largely unexplored. Here, by developing a chemical glycoproteomic strategy based on metabolic glycan labeling (MGL), we report a comprehensive profiling of the N-glycoproteome in rice seedlings. The rice seedlings are incubated with N-azidoacetylgalactosamine (GalNAz) - a monosaccharide analog containing a bioorthogonal functional group - to metabolically label N-glycans, followed by conjugation with an affinity probe via click chemistry for enrichment of the N-glycoproteins. Subsequent mass spectrometry analyses identify a total of 403 N-glycosylation sites and 673 N-glycosylated proteins, which are involved in various important biological processes. In particular, the core components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery are N-glycosylated, and the N-glycosylation is important for the ERAD-L function. This work not only provides an invaluable resource for studying rice N-glycosylation, but also demonstrates the applicability of MGL in glycoproteomic profiling for crop species.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes