Zuzu Gacso , George Adamson , Joseph Slama , Coco Xie , Emma Burdick , Kirk Persaud , Sharnom Chowdhury , Zaki Sya Ahmed , Emily Vaysman , Arthur Aminov , Robert Ranaldi , Ewa Galaj
{"title":"Fentanyl exposure alters rat CB1 receptor expression in the insula, nucleus accumbens and substantia nigra","authors":"Zuzu Gacso , George Adamson , Joseph Slama , Coco Xie , Emma Burdick , Kirk Persaud , Sharnom Chowdhury , Zaki Sya Ahmed , Emily Vaysman , Arthur Aminov , Robert Ranaldi , Ewa Galaj","doi":"10.1016/j.neulet.2024.138058","DOIUrl":null,"url":null,"abstract":"<div><div>Prolonged periods of opioid use have been shown to cause neuroadaptations in the brain’s reward circuitry, contributing to addictive behaviors and drug dependence. Recently, considerable focus has been placed on the role of the endocannabinoid system (ECS) and its CB receptors in opioid-driven behaviors. However, opioid-induced neuroadaptations to the ECS remain understudied. In this study, we systematically assessed CB1 receptor (CB1R) protein expression within the cortico-mesolimbic-basal ganglia circuit in rats following chronic fentanyl exposure. Male and female Long Evans rats were administered increasing daily doses of fentanyl or saline for 14 days. During naloxone-precipitated withdrawal, fentanyl-treated rats exhibited significantly higher withdrawal symptoms than saline-treated controls. Using Western Blotting, we demonstrated that the fentanyl-treated rats had significantly higher CB1R expression in the insula and significantly lower CB1R expression in the nucleus accumbens and substantia nigra compared to saline-treated rats. No significant differences in CB1R expression were detected between saline and fentanyl-treated rats in the prefrontal cortex, dorsal striatum, medial septum, hypothalamus, amygdala, hippocampus, ventral tegmental area, periaqueductal gray area, pedunculopontine tegmentum, and laterodorsal tegmentum (LDT). These findings suggest that chronic fentanyl exposure leads to region-specific neuroadaptations of CB1R protein expression in motivation- and addiction-associated brain regions.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"844 ","pages":"Article 138058"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024004373","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prolonged periods of opioid use have been shown to cause neuroadaptations in the brain’s reward circuitry, contributing to addictive behaviors and drug dependence. Recently, considerable focus has been placed on the role of the endocannabinoid system (ECS) and its CB receptors in opioid-driven behaviors. However, opioid-induced neuroadaptations to the ECS remain understudied. In this study, we systematically assessed CB1 receptor (CB1R) protein expression within the cortico-mesolimbic-basal ganglia circuit in rats following chronic fentanyl exposure. Male and female Long Evans rats were administered increasing daily doses of fentanyl or saline for 14 days. During naloxone-precipitated withdrawal, fentanyl-treated rats exhibited significantly higher withdrawal symptoms than saline-treated controls. Using Western Blotting, we demonstrated that the fentanyl-treated rats had significantly higher CB1R expression in the insula and significantly lower CB1R expression in the nucleus accumbens and substantia nigra compared to saline-treated rats. No significant differences in CB1R expression were detected between saline and fentanyl-treated rats in the prefrontal cortex, dorsal striatum, medial septum, hypothalamus, amygdala, hippocampus, ventral tegmental area, periaqueductal gray area, pedunculopontine tegmentum, and laterodorsal tegmentum (LDT). These findings suggest that chronic fentanyl exposure leads to region-specific neuroadaptations of CB1R protein expression in motivation- and addiction-associated brain regions.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.