Yun-Kyung Hahn, Sara R Nass, William D Marks, Jason J Paris, Kurt F Hauser, Pamela E Knapp
{"title":"Sex related differences in cognitive deficits: Disrupted Arc/Arg3.1 signaling in an HIV model.","authors":"Yun-Kyung Hahn, Sara R Nass, William D Marks, Jason J Paris, Kurt F Hauser, Pamela E Knapp","doi":"10.1016/j.neulet.2024.138071","DOIUrl":null,"url":null,"abstract":"<p><p>Combined and highly active anti-retroviral therapies (cART) have transitioned HIV into a more chronic disease. Roughly half of people living with HIV (PLWH) still experience neurocognitive disorders, albeit less severely than in the pre-cART era. Sex-related effects on memory/cognition remain understudied, although the percentage of PLWH that are female has increased. We utilized a transgenic mouse model of HIV that conditionally expresses HIV-1 Tat<sub>1-86</sub> in the CNS to examine cognitive behaviors and the expression of biomarkers related to learning and memory in both sexes. Tat+ males exhibited deficits in spatial learning/memory and object recognition, while Tat+ females showed enhanced fear memory. We investigated the involvement of activity-regulated cytoskeleton-associated protein (Arc), which is induced by novel experience related to learning/memory. We observed hippocampal Arc induction following foot shock in Tat+ females but not Tat+ males. Hippocampal levels of Arc, amyloid β (Aβ) monomers/oligomers and pCREB were altered in a sex-specific manner. CREB activity, which is highly associated with Arc induction, was reduced only in Tat+ males. Tat exposure also decreased Arc expression in cultured human neurons. Thus, HIV-1 Tat effects on CREB/Arc signaling may differ between sexes, contributing to differences in cognitive deficits observed here and in PLWH.</p>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":" ","pages":"138071"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neulet.2024.138071","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Combined and highly active anti-retroviral therapies (cART) have transitioned HIV into a more chronic disease. Roughly half of people living with HIV (PLWH) still experience neurocognitive disorders, albeit less severely than in the pre-cART era. Sex-related effects on memory/cognition remain understudied, although the percentage of PLWH that are female has increased. We utilized a transgenic mouse model of HIV that conditionally expresses HIV-1 Tat1-86 in the CNS to examine cognitive behaviors and the expression of biomarkers related to learning and memory in both sexes. Tat+ males exhibited deficits in spatial learning/memory and object recognition, while Tat+ females showed enhanced fear memory. We investigated the involvement of activity-regulated cytoskeleton-associated protein (Arc), which is induced by novel experience related to learning/memory. We observed hippocampal Arc induction following foot shock in Tat+ females but not Tat+ males. Hippocampal levels of Arc, amyloid β (Aβ) monomers/oligomers and pCREB were altered in a sex-specific manner. CREB activity, which is highly associated with Arc induction, was reduced only in Tat+ males. Tat exposure also decreased Arc expression in cultured human neurons. Thus, HIV-1 Tat effects on CREB/Arc signaling may differ between sexes, contributing to differences in cognitive deficits observed here and in PLWH.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.