Florencia B Rossi, Nicola Rossi, Gabriel Orso, Lucas Barberis, Raul H Marin, Jackelyn M Kembro
{"title":"Monitoring poultry social dynamics using colored tags: Avian visual perception, behavioral effects, and artificial intelligence precision.","authors":"Florencia B Rossi, Nicola Rossi, Gabriel Orso, Lucas Barberis, Raul H Marin, Jackelyn M Kembro","doi":"10.1016/j.psj.2024.104464","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) in animal behavior and welfare research is on the rise. AI can detect behaviors and localize animals in video recordings, thus it is a valuable tool for studying social dynamics. However, maintaining the identity of individuals over time, especially in homogeneous poultry flocks, remains challenging for algorithms. We propose using differentially colored \"backpack\" tags (black, gray, white, orange, red, purple, and green) detectable with computer vision (eg. YOLO) from top-view video recordings of pens. These tags can also accommodate sensors, such as accelerometers. In separate experiments, we aim to: (i) evaluate avian visual perception of the different colored tags; (ii) assess the potential impact of tag colors on social behavior; and (iii) test the ability of the YOLO model to accurately distinguish between different colored tags on Japanese quail in social group settings. First, the reflectance spectra of tags and feathers were measured. An avian visual model was applied to calculate the quantum catches for each spectrum. Green and purple tags showed significant chromatic contrast to the feather. Mostly tags presented greater luminance receptor stimulation than feathers. Birds wearing white, gray, purple, and green tags pecked significantly more at their own tags than those with black (control) tags. Additionally, fewer aggressive interactions were observed in groups with orange tags compared to groups with other colors, except for red. Next, heterogeneous groups of 5 birds with different color tags were videorecorded for 1 h. The precision and accuracy of YOLO to detect each color tag were assessed, yielding values of 95.9% and 97.3%, respectively, with most errors stemming from misclassifications between black and gray tags. Lastly using the YOLO output, we estimated each bird's average social distance, locomotion speed, and the percentage of time spent moving. No behavioral differences associated with tag color were detected. In conclusion, carefully selected colored backpack tags can be identified using AI models and can also hold other sensors, making them powerful tools for behavioral and welfare studies.</p>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 1","pages":"104464"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.psj.2024.104464","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) in animal behavior and welfare research is on the rise. AI can detect behaviors and localize animals in video recordings, thus it is a valuable tool for studying social dynamics. However, maintaining the identity of individuals over time, especially in homogeneous poultry flocks, remains challenging for algorithms. We propose using differentially colored "backpack" tags (black, gray, white, orange, red, purple, and green) detectable with computer vision (eg. YOLO) from top-view video recordings of pens. These tags can also accommodate sensors, such as accelerometers. In separate experiments, we aim to: (i) evaluate avian visual perception of the different colored tags; (ii) assess the potential impact of tag colors on social behavior; and (iii) test the ability of the YOLO model to accurately distinguish between different colored tags on Japanese quail in social group settings. First, the reflectance spectra of tags and feathers were measured. An avian visual model was applied to calculate the quantum catches for each spectrum. Green and purple tags showed significant chromatic contrast to the feather. Mostly tags presented greater luminance receptor stimulation than feathers. Birds wearing white, gray, purple, and green tags pecked significantly more at their own tags than those with black (control) tags. Additionally, fewer aggressive interactions were observed in groups with orange tags compared to groups with other colors, except for red. Next, heterogeneous groups of 5 birds with different color tags were videorecorded for 1 h. The precision and accuracy of YOLO to detect each color tag were assessed, yielding values of 95.9% and 97.3%, respectively, with most errors stemming from misclassifications between black and gray tags. Lastly using the YOLO output, we estimated each bird's average social distance, locomotion speed, and the percentage of time spent moving. No behavioral differences associated with tag color were detected. In conclusion, carefully selected colored backpack tags can be identified using AI models and can also hold other sensors, making them powerful tools for behavioral and welfare studies.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.