{"title":"Exploratory analysis of Type B Aortic Dissection (TBAD) segmentation in 2D CTA images using various kernels.","authors":"Ayman Abaid, Srinivas Ilancheran, Talha Iqbal, Niamh Hynes, Ihsan Ullah","doi":"10.1016/j.compmedimag.2024.102460","DOIUrl":null,"url":null,"abstract":"<p><p>Type-B Aortic Dissection is a rare but fatal cardiovascular disease characterized by a tear in the inner layer of the aorta, affecting 3.5 per 100,000 individuals annually. In this work, we explore the feasibility of leveraging two-dimensional Convolutional Neural Network (CNN) models to perform accurate slice-by-slice segmentation of true lumen, false lumen and false lumen thrombus in Computed Tomography Angiography images. The study performed an exploratory analysis of three 2D U-Net models: the baseline 2D U-Net, a variant of U-Net with atrous convolutions, and a U-Net with a custom layer featuring a position-oriented, partially shared weighting scheme kernel. These models were trained and benchmarked against a state-of-the-art baseline 3D U-Net model. Overall, our U-Net with the VGG19 encoder architecture achieved the best performance score among all other models, with a mean Dice score of 80.48% and an IoU score of 72.93%. The segmentation results were also compared with the Segment Anything Model (SAM) and the UniverSeg models. Our findings indicate that our 2D U-Net models excel in false lumen and true lumen segmentation accuracy while achieving lower false lumen thrombus segmentation accuracy compared to the state-of-the-art 3D U-Net model. The study findings highlight the complexities involved in developing segmentation models, especially for cardiovascular medical images, and emphasize the importance of developing lightweight models for real-time decision-making to improve overall patient care.</p>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"118 ","pages":"102460"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compmedimag.2024.102460","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Type-B Aortic Dissection is a rare but fatal cardiovascular disease characterized by a tear in the inner layer of the aorta, affecting 3.5 per 100,000 individuals annually. In this work, we explore the feasibility of leveraging two-dimensional Convolutional Neural Network (CNN) models to perform accurate slice-by-slice segmentation of true lumen, false lumen and false lumen thrombus in Computed Tomography Angiography images. The study performed an exploratory analysis of three 2D U-Net models: the baseline 2D U-Net, a variant of U-Net with atrous convolutions, and a U-Net with a custom layer featuring a position-oriented, partially shared weighting scheme kernel. These models were trained and benchmarked against a state-of-the-art baseline 3D U-Net model. Overall, our U-Net with the VGG19 encoder architecture achieved the best performance score among all other models, with a mean Dice score of 80.48% and an IoU score of 72.93%. The segmentation results were also compared with the Segment Anything Model (SAM) and the UniverSeg models. Our findings indicate that our 2D U-Net models excel in false lumen and true lumen segmentation accuracy while achieving lower false lumen thrombus segmentation accuracy compared to the state-of-the-art 3D U-Net model. The study findings highlight the complexities involved in developing segmentation models, especially for cardiovascular medical images, and emphasize the importance of developing lightweight models for real-time decision-making to improve overall patient care.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.