Hannah Simborio, Hassan Hayek, Beata Kosmider, John W Elrod, Sudhir Bolla, Nathaniel Marchetti, Gerard J Criner, Karim Bahmed
{"title":"Mitochondrial dysfunction and impaired DNA damage repair through PICT1 dysregulation in alveolar type II cells in emphysema.","authors":"Hannah Simborio, Hassan Hayek, Beata Kosmider, John W Elrod, Sudhir Bolla, Nathaniel Marchetti, Gerard J Criner, Karim Bahmed","doi":"10.1186/s12964-024-01896-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alveolar type II (ATII) cells have a stem cell potential in the adult lung and repair the epithelium after injury induced by harmful factors. Their damage contributes to emphysema development, characterized by alveolar wall destruction. Cigarette smoke is the main risk factor for this disease development.</p><p><strong>Methods: </strong>ATII cells were obtained from control non-smoker and smoker organ donors and emphysema patients. Isolated cells were used to study the role of PICT1 in this disease. Also, a cigarette smoke-induced murine model of emphysema was applied to define its function in disease progression further.</p><p><strong>Results: </strong>Decreased PICT1 expression was observed in human and murine ATII cells in emphysema. PICT1 was immunoprecipitated, followed by mass spectrometry analysis. We identified MRE11, which is involved in DNA damage repair, as its novel interactor. PICT1 and MRE11 protein levels were decreased in ATII cells in this disease. Moreover, cells with PICT1 deletion were exposed to cigarette smoke extract. This treatment induced cellular and mitochondrial ROS, cell cycle arrest, nuclear and mitochondrial DNA damage, decreased mitochondrial respiration, and impaired DNA damage repair.</p><p><strong>Conclusions: </strong>This study indicates that PICT1 dysfunction can negatively affect genome stability and mitochondrial activity in ATII cells, contributing to emphysema development. Targeting PICT1 can lead to novel therapeutic approaches for this disease.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"562"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01896-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Alveolar type II (ATII) cells have a stem cell potential in the adult lung and repair the epithelium after injury induced by harmful factors. Their damage contributes to emphysema development, characterized by alveolar wall destruction. Cigarette smoke is the main risk factor for this disease development.
Methods: ATII cells were obtained from control non-smoker and smoker organ donors and emphysema patients. Isolated cells were used to study the role of PICT1 in this disease. Also, a cigarette smoke-induced murine model of emphysema was applied to define its function in disease progression further.
Results: Decreased PICT1 expression was observed in human and murine ATII cells in emphysema. PICT1 was immunoprecipitated, followed by mass spectrometry analysis. We identified MRE11, which is involved in DNA damage repair, as its novel interactor. PICT1 and MRE11 protein levels were decreased in ATII cells in this disease. Moreover, cells with PICT1 deletion were exposed to cigarette smoke extract. This treatment induced cellular and mitochondrial ROS, cell cycle arrest, nuclear and mitochondrial DNA damage, decreased mitochondrial respiration, and impaired DNA damage repair.
Conclusions: This study indicates that PICT1 dysfunction can negatively affect genome stability and mitochondrial activity in ATII cells, contributing to emphysema development. Targeting PICT1 can lead to novel therapeutic approaches for this disease.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.