Phosphorylation Enables Nano‐Graphene for Tunable Artificial Synapses

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-24 DOI:10.1002/adfm.202416794
Zhenyu Zhang, Yuanduo Qu, Siran Chen, Shanwu Ke, Mengdi Hao, Yongyue Xiao, Shuai Zhang, Ziqiang Cheng, Jiangrong Xiao, Hao Huang, Cong Ye, Paul K. Chu, Xue‐Feng Yu, Jiahong Wang
{"title":"Phosphorylation Enables Nano‐Graphene for Tunable Artificial Synapses","authors":"Zhenyu Zhang, Yuanduo Qu, Siran Chen, Shanwu Ke, Mengdi Hao, Yongyue Xiao, Shuai Zhang, Ziqiang Cheng, Jiangrong Xiao, Hao Huang, Cong Ye, Paul K. Chu, Xue‐Feng Yu, Jiahong Wang","doi":"10.1002/adfm.202416794","DOIUrl":null,"url":null,"abstract":"Flexible and robust memristors with controllable resistance‐switching characteristics are important to neuromorphic computing. However, the nanomaterials‐based, solution‐processed resistance switching layer usually has poor reliability and tunability due to uneven morphology and invariable surface properties. Herein, phosphorylated graphene nanoflakes (phos‐GPs) are synthesized for high‐performance solution‐processed flexible memristors. In situ conductive atomic force microscopy reveals that the tightly stacked uniform nanoflakes and modified phosphorate groups jointly reduce the formation barrier of the conductive filaments. Furthermore, phosphorylation gives rise to surface silver ion coordination leading to enhanced radial growth of the conductive filaments. The memristor shows volatile characteristics in the Ag/phos‐GPs/ITO architecture and exhibits non‐volatile properties in the Ag/Ag<jats:sup>+</jats:sup>‐(phos‐GPs)/ITO structure. Both types of memristors display consistent <jats:italic>I‐</jats:italic>‐<jats:italic>V</jats:italic> curves during long‐term cycling and under repetitive mechanical bending, in addition to excellent synaptic plasticity. Moreover, ultrasmall nonlinearity is observed from non‐volatile long‐term synaptic potentiation and depression. By utilizing the tunable artificial synapses, the processes of memory‐forgetting and re‐recognition are simulated, and the image recognition tasks are accomplished by the artificial neural networks.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"78 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416794","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible and robust memristors with controllable resistance‐switching characteristics are important to neuromorphic computing. However, the nanomaterials‐based, solution‐processed resistance switching layer usually has poor reliability and tunability due to uneven morphology and invariable surface properties. Herein, phosphorylated graphene nanoflakes (phos‐GPs) are synthesized for high‐performance solution‐processed flexible memristors. In situ conductive atomic force microscopy reveals that the tightly stacked uniform nanoflakes and modified phosphorate groups jointly reduce the formation barrier of the conductive filaments. Furthermore, phosphorylation gives rise to surface silver ion coordination leading to enhanced radial growth of the conductive filaments. The memristor shows volatile characteristics in the Ag/phos‐GPs/ITO architecture and exhibits non‐volatile properties in the Ag/Ag+‐(phos‐GPs)/ITO structure. Both types of memristors display consistent I‐V curves during long‐term cycling and under repetitive mechanical bending, in addition to excellent synaptic plasticity. Moreover, ultrasmall nonlinearity is observed from non‐volatile long‐term synaptic potentiation and depression. By utilizing the tunable artificial synapses, the processes of memory‐forgetting and re‐recognition are simulated, and the image recognition tasks are accomplished by the artificial neural networks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷酸化使纳米石墨烯成为可调人工突触的可能
具有可控电阻开关特性的灵活稳健的忆阻器对于神经形态计算非常重要。然而,基于纳米材料的溶液加工电阻开关层由于形态不均匀和表面特性不稳定,通常可靠性和可调性较差。本文合成了磷酸化石墨烯纳米片(phos-GPs),用于高性能溶液加工柔性忆阻器。原位导电原子力显微镜显示,紧密堆叠的均匀纳米片和修饰的磷酸基团共同降低了导电丝的形成障碍。此外,磷酸化还导致表面银离子配位,从而增强了导电丝的径向生长。在 Ag/phos-GPs/ITO 结构中,忆阻器显示出挥发性特征,而在 Ag/Ag+-(phos-GPs)/ITO 结构中,忆阻器则表现出非易失特性。这两种类型的忆阻器在长期循环和重复机械弯曲过程中都显示出一致的I--V曲线,此外还具有出色的突触可塑性。此外,从非挥发性长期突触电位和抑制中还观察到了超小非线性。利用可调人工突触,可以模拟记忆遗忘和重新识别的过程,并通过人工神经网络完成图像识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Crystalline-Amorphous Hybrid of MoS2 for Enhanced Piezo-catalytic Activation of Peroxomonosulfate Toward Organic Pollutants Degradation Multifunctional Polymeric Nanoneedles with “Full-Spectrum Intrinsic Internal Standard” for Precise SERS Biosensing In Situ Asymmetric Patterning for Information Encryption Anomalous Electrochemical Aging Strengthening Behavior of MXene Electrodes for Synergistic Anion‐Cation Storage in Dual‐Ion Batteries A First Truly Hydrocarbon‐Based Electrochromic Molecule Exhibiting Transparent‐to‐Dark Switching and Heavy Atom Effect of Bromine in Color Shifting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1