Cobalt-Nickel Sulfide Hierarchical Hollow Microspheres to Boost Electrochemical Activity for Supercapacitors

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-11-24 DOI:10.1016/j.jallcom.2024.177730
Xiankun Xiong, Jing Jin, Mingjiang Xie, Jian Chen, Yan Zhang, Liu Wan, Cheng Du
{"title":"Cobalt-Nickel Sulfide Hierarchical Hollow Microspheres to Boost Electrochemical Activity for Supercapacitors","authors":"Xiankun Xiong, Jing Jin, Mingjiang Xie, Jian Chen, Yan Zhang, Liu Wan, Cheng Du","doi":"10.1016/j.jallcom.2024.177730","DOIUrl":null,"url":null,"abstract":"Cobalt-nickel bimetallic sulfides are promising candidates for supercapacitors due to their high theoretical specific capacity, good electrical conductivity and fast redox kinetics. Nevertheless, they confront challenges such as poor cycling stability, volume expansion, and complicated synthesis methods. To address these issues, in this work, a MOF-assisted synthesis strategy is developed to achieve the one-pot formation cobalt-nickel sulfide hollow microspheres. The 2D nanosheet-constructed hierarchical hollow configuration promotes rapid electron/ion transfer, provides more active sites and effectively mitigates volume expansion during cycling. The optimized Co<sub>1</sub>Ni<sub>4</sub>S exhibits high electrochemical performance, such as a specific capacity of 277.2<!-- --> <!-- -->mAh/g (2217<!-- --> <!-- -->F·g<sup>−1</sup>) at 1<!-- --> <!-- -->A·g<sup>−1</sup>, remarkable cycling stability with ~100% retention after 5,000 cycles, and favorable rate capability with 84.8% retention at 20<!-- --> <!-- -->A·g<sup>−1</sup>. Furthermore, an aqueous asymmetric supercapacitor (ASC) assembled with the Co<sub>1</sub>Ni<sub>4</sub>S and active carbon (AC) derived from lotus pollen achieves an energy density of 86.9<!-- --> <!-- -->Wh·kg<sup>-1</sup> at 800.1<!-- --> <!-- -->W·kg<sup>-1</sup>, along with significant cycling stability (97.1% retentions over 30,000 cycles). These superior results showcase a simple one-step method for developing superior-performing electrode materials applicable to advanced supercapacitors.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"20 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177730","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalt-nickel bimetallic sulfides are promising candidates for supercapacitors due to their high theoretical specific capacity, good electrical conductivity and fast redox kinetics. Nevertheless, they confront challenges such as poor cycling stability, volume expansion, and complicated synthesis methods. To address these issues, in this work, a MOF-assisted synthesis strategy is developed to achieve the one-pot formation cobalt-nickel sulfide hollow microspheres. The 2D nanosheet-constructed hierarchical hollow configuration promotes rapid electron/ion transfer, provides more active sites and effectively mitigates volume expansion during cycling. The optimized Co1Ni4S exhibits high electrochemical performance, such as a specific capacity of 277.2 mAh/g (2217 F·g−1) at 1 A·g−1, remarkable cycling stability with ~100% retention after 5,000 cycles, and favorable rate capability with 84.8% retention at 20 A·g−1. Furthermore, an aqueous asymmetric supercapacitor (ASC) assembled with the Co1Ni4S and active carbon (AC) derived from lotus pollen achieves an energy density of 86.9 Wh·kg-1 at 800.1 W·kg-1, along with significant cycling stability (97.1% retentions over 30,000 cycles). These superior results showcase a simple one-step method for developing superior-performing electrode materials applicable to advanced supercapacitors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫化钴镍分层中空微球提高超级电容器的电化学活性
钴镍双金属硫化物具有理论比容量高、导电性好和氧化还原动力学快等优点,是超级电容器的理想候选材料。然而,它们也面临着循环稳定性差、体积膨胀和合成方法复杂等挑战。为了解决这些问题,本研究开发了一种 MOF 辅助合成策略,实现了硫化钴-镍空心微球的一锅合成。二维纳米片结构的分层空心构型促进了电子/离子的快速转移,提供了更多的活性位点,并有效缓解了循环过程中的体积膨胀。优化后的 Co1Ni4S 具有很高的电化学性能,例如在 1 A-g-1 条件下的比容量为 277.2 mAh/g(2217 F-g-1);显著的循环稳定性,在 5,000 次循环后仍能保持约 100%的容量;良好的速率能力,在 20 A-g-1 条件下仍能保持 84.8%的容量。此外,用 Co1Ni4S 和从莲花花粉中提取的活性碳(AC)组装的水性非对称超级电容器(ASC)在 800.1 W-kg-1 的条件下实现了 86.9 Wh-kg-1 的能量密度,并具有显著的循环稳定性(30,000 次循环后保持率为 97.1%)。这些优异的结果展示了一种简单的一步法,可用于开发适用于先进超级电容器的性能优异的电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Advancements in Magnetic Nanoparticle Design: SiO2@Fe3O4 Core/Shell Nanoparticles with Size-Tunable Magnetic Responses Precise Control of Metal-Insulator Transition Temperature in La-Substituted La0.7Ca0.3MnO3 via Ionic Radius Tuning Enhancing low temperature properties through nano-structured lithium iron phosphate and solid liquid interface control by LATP Enhanced energy storage performance of Mn-doped NBT-based flexible films by defect engineering Effect of the synergistic effect of Cr and Mo on the solidification microstructure and mechanical properties of NiAl-based high-entropy alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1