Fully hot Air-Processed All-Inorganic CsPbI2Br perovskite solar cells for outdoor and indoor applications

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-11-24 DOI:10.1016/j.apsusc.2024.161909
Jitendra Bahadur, SungWon Cho, Padmini Pandey, Saemon Yoon, Dong-Gun Lee, Jun Ryu, Veerpratap Meena, Dong-Won Kang
{"title":"Fully hot Air-Processed All-Inorganic CsPbI2Br perovskite solar cells for outdoor and indoor applications","authors":"Jitendra Bahadur, SungWon Cho, Padmini Pandey, Saemon Yoon, Dong-Gun Lee, Jun Ryu, Veerpratap Meena, Dong-Won Kang","doi":"10.1016/j.apsusc.2024.161909","DOIUrl":null,"url":null,"abstract":"The all-inorganic α-CsPbI<sub>2</sub>Br perovskite has emerged as a promising material for photovoltaic applications due to its superior optoelectronic properties and thermal stability. However, achieving a defect-free, crystalline CsPbI<sub>2</sub>Br perovskite film remains challenging due to the rapid crystal growth induced via high-temperature hot plate processing, which causes surface defects including pinholes and voids. This study introduces a novel hot plate-free methodology in which the perovskite film is fully processed using a dynamic hot air treatment under ambient conditions. Crystallographic and microscopic analyses reveal that hot air-assisted method produces highly crystalline, uniform, and compact perovskite film. The controlled crystal growth mechanism facilitated by the hot air process involves the formation of an intermediate phase (CsI-DMSO:PbX<sub>2</sub>), followed by gradual solvent evaporation, resulting in improved film quality. The resulting perovskite solar cells (PSCs) exhibited a champion power conversion efficiency (PCE) of 13.74 % and maintained around 51.60 % of its initial PCE after thermal aging at 85 ℃ under ambient conditions over 1440 h. Furthermore, under indoor white LED illumination (3200 K, 1000 lx), the optimized PSC achieved an impressive PCE of 22 %. These findings demonstrate that the dynamic hot air process is a viable and scalable technique for producing high-performance, stable PSCs under ambient conditions.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"24 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161909","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The all-inorganic α-CsPbI2Br perovskite has emerged as a promising material for photovoltaic applications due to its superior optoelectronic properties and thermal stability. However, achieving a defect-free, crystalline CsPbI2Br perovskite film remains challenging due to the rapid crystal growth induced via high-temperature hot plate processing, which causes surface defects including pinholes and voids. This study introduces a novel hot plate-free methodology in which the perovskite film is fully processed using a dynamic hot air treatment under ambient conditions. Crystallographic and microscopic analyses reveal that hot air-assisted method produces highly crystalline, uniform, and compact perovskite film. The controlled crystal growth mechanism facilitated by the hot air process involves the formation of an intermediate phase (CsI-DMSO:PbX2), followed by gradual solvent evaporation, resulting in improved film quality. The resulting perovskite solar cells (PSCs) exhibited a champion power conversion efficiency (PCE) of 13.74 % and maintained around 51.60 % of its initial PCE after thermal aging at 85 ℃ under ambient conditions over 1440 h. Furthermore, under indoor white LED illumination (3200 K, 1000 lx), the optimized PSC achieved an impressive PCE of 22 %. These findings demonstrate that the dynamic hot air process is a viable and scalable technique for producing high-performance, stable PSCs under ambient conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于室外和室内应用的全热风处理全无机碲化镉-铋-2Br 包晶石太阳能电池
无机 α-CsPbI2Br 包晶石因其卓越的光电特性和热稳定性,已成为一种很有前途的光伏应用材料。然而,由于高温热板加工会导致晶体快速生长,从而产生针孔和空洞等表面缺陷,因此要获得无缺陷、结晶的 CsPbI2Br 包晶薄膜仍具有挑战性。本研究介绍了一种新颖的无热板方法,即在环境条件下使用动态热空气处理对透辉石薄膜进行全面加工。结晶学和显微分析表明,热空气辅助法可生成高度结晶、均匀和致密的过氧化物薄膜。热风工艺促进的受控晶体生长机制包括形成中间相(CsI-DMSO:PbX2),然后逐渐蒸发溶剂,从而提高薄膜质量。所制备的过氧化物太阳能电池(PSCs)显示出 13.74% 的冠军功率转换效率(PCE),并且在环境条件下于 85 ℃ 经过 1440 小时的热老化后,其初始 PCE 仍保持在 51.60% 左右。此外,在室内白光 LED 照明(3200 K,1000 lx)下,优化后的 PSC 实现了令人印象深刻的 22% 的 PCE。这些研究结果表明,动态热空气工艺是在环境条件下生产高性能、稳定 PSC 的一种可行且可扩展的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Synthesis and potent antibacterial activity of nano-CuFe2O4/MoS2@Ag composite under visible light Non-Fourier thermal spike effect on nanocrystalline Cu phase engineering Fully hot Air-Processed All-Inorganic CsPbI2Br perovskite solar cells for outdoor and indoor applications Designing core–shell LiNi0.5Mn1.5O4-based cathode materials with enhanced rate capability and improved cycling stability Fe/Co bimetallic borides with modified electronic structure for Efficient oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1