Advances in Super-resolution Stimulated Raman Scattering Microscopy

William J. Tipping*, Karen Faulds and Duncan Graham*, 
{"title":"Advances in Super-resolution Stimulated Raman Scattering Microscopy","authors":"William J. Tipping*,&nbsp;Karen Faulds and Duncan Graham*,&nbsp;","doi":"10.1021/cbmi.4c0005710.1021/cbmi.4c00057","DOIUrl":null,"url":null,"abstract":"<p >Super-resolution optical imaging overcomes the diffraction limit in light microscopy to enable the visualization of previously invisible molecular details within a sample. The realization of super-resolution imaging based on stimulated Raman scattering (SRS) microscopy represents a recent area of fruitful development that has been used to visualize cellular structures in three dimensions, with multiple spectroscopic colors at the nanometer scale. Several fundamental approaches to achieving super-resolution SRS imaging have been reported, including optical engineering strategies, expansion microscopy, deconvolution image analysis, and photoswitchable SRS reporters as methods to break the diffraction limit. These approaches have enabled the visualization of biological structures, cellular interactions, and dynamics with unprecedented detail. In this Perspective, an overview of the current strategies and capabilities for achieving super-resolution SRS imaging will be highlighted together with an outlook on potential directions of this rapidly evolving field.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 11","pages":"733–743 733–743"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Super-resolution optical imaging overcomes the diffraction limit in light microscopy to enable the visualization of previously invisible molecular details within a sample. The realization of super-resolution imaging based on stimulated Raman scattering (SRS) microscopy represents a recent area of fruitful development that has been used to visualize cellular structures in three dimensions, with multiple spectroscopic colors at the nanometer scale. Several fundamental approaches to achieving super-resolution SRS imaging have been reported, including optical engineering strategies, expansion microscopy, deconvolution image analysis, and photoswitchable SRS reporters as methods to break the diffraction limit. These approaches have enabled the visualization of biological structures, cellular interactions, and dynamics with unprecedented detail. In this Perspective, an overview of the current strategies and capabilities for achieving super-resolution SRS imaging will be highlighted together with an outlook on potential directions of this rapidly evolving field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超分辨率受激拉曼散射显微镜的研究进展
超分辨率光学成像克服了光学显微镜的衍射极限,使以前看不到的样品内部分子细节变得可视化。基于受激拉曼散射(SRS)显微镜的超分辨率成像技术的实现代表了最近一个富有成果的发展领域,该技术已被用于在纳米尺度上以多种光谱颜色对细胞结构进行三维可视化。实现超分辨 SRS 成像的几种基本方法已有报道,包括光学工程策略、扩展显微镜、解卷积图像分析以及作为打破衍射极限方法的光开关 SRS 报告器。这些方法使生物结构、细胞相互作用和动态的可视化变得前所未有的详细。本视角将概述实现超分辨率 SRS 成像的当前策略和能力,并展望这一快速发展领域的潜在发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
期刊最新文献
Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic Activities The Evolution of Sub-diffraction Chemical Imaging from Nanoscale to AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1