Improving Doping Efficiency of Mist-CVD Epitaxy for Tin-Doped α-Ga₂O₃ Using Tin Chloride Pentahydrate

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-10-07 DOI:10.1109/TSM.2024.3475730
Han-Yin Liu;Yun-Yun Cheng;Wei-Han Chen;Ko-Fan Hu;Nei-En Chiu
{"title":"Improving Doping Efficiency of Mist-CVD Epitaxy for Tin-Doped α-Ga₂O₃ Using Tin Chloride Pentahydrate","authors":"Han-Yin Liu;Yun-Yun Cheng;Wei-Han Chen;Ko-Fan Hu;Nei-En Chiu","doi":"10.1109/TSM.2024.3475730","DOIUrl":null,"url":null,"abstract":"Tin chloride pentahydrate (SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O) is used as the dopant precursor to form the n-type \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3 in this study. The X-ray diffraction (XRD) and high-resolution transmission electron microscope (HR-TEM) confirm that the single-crystalline \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O epi-layer was grown on the r-plane sapphire substrate using mist chemical vapor deposition (mist-CVD). When the Sn doping atomic concentrations are the same, the electron concentration of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O is higher than that of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{2}}} \\cdot 2$ </tex-math></inline-formula>\n H2O. The lower thermal decomposition temperature and lower residues of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O are confirmed in thermogravimetric (TGA) analysis. Sn \n<inline-formula> <tex-math>$3d_{5/2}$ </tex-math></inline-formula>\n binding energy spectra observed by X-ray photoelectron spectroscopy (XPS) show that SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O provides more \n<inline-formula> <tex-math>$Sn^{4+}$ </tex-math></inline-formula>\n than SnCl\n<inline-formula> <tex-math>${_{{2}}} \\cdot 2$ </tex-math></inline-formula>\n H2O. The specific contact resistivity of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O reaches \n<inline-formula> <tex-math>$1.62\\times 10{^{-}5 }~\\Omega $ </tex-math></inline-formula>\n-cm2 with \n<inline-formula> <tex-math>$10^{20}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-}3 $ </tex-math></inline-formula>\n Sn doping concentration. Moreover, the power figure-of-merit (PFoM) of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O-based lateral Schottky barrier diode (SBD) is 0.356 GW/cm2 which is comparable to \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-Ga2O3-based SBD.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"629-633"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10706769/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Tin chloride pentahydrate (SnCl ${_{{4}}} \cdot 5$ H2O) is used as the dopant precursor to form the n-type $\alpha $ -Ga2O3 in this study. The X-ray diffraction (XRD) and high-resolution transmission electron microscope (HR-TEM) confirm that the single-crystalline $\alpha $ -Ga2O3:SnCl ${_{{4}}} \cdot 5$ H2O epi-layer was grown on the r-plane sapphire substrate using mist chemical vapor deposition (mist-CVD). When the Sn doping atomic concentrations are the same, the electron concentration of $\alpha $ -Ga2O3:SnCl ${_{{4}}} \cdot 5$ H2O is higher than that of $\alpha $ -Ga2O3:SnCl ${_{{2}}} \cdot 2$ H2O. The lower thermal decomposition temperature and lower residues of $\alpha $ -Ga2O3:SnCl ${_{{4}}} \cdot 5$ H2O are confirmed in thermogravimetric (TGA) analysis. Sn $3d_{5/2}$ binding energy spectra observed by X-ray photoelectron spectroscopy (XPS) show that SnCl ${_{{4}}} \cdot 5$ H2O provides more $Sn^{4+}$ than SnCl ${_{{2}}} \cdot 2$ H2O. The specific contact resistivity of $\alpha $ -Ga2O3:SnCl ${_{{4}}} \cdot 5$ H2O reaches $1.62\times 10{^{-}5 }~\Omega $ -cm2 with $10^{20}$ cm $^{-}3 $ Sn doping concentration. Moreover, the power figure-of-merit (PFoM) of $\alpha $ -Ga2O3:SnCl ${_{{4}}} \cdot 5$ H2O-based lateral Schottky barrier diode (SBD) is 0.356 GW/cm2 which is comparable to $\beta $ -Ga2O3-based SBD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用五水合氯化锡提高掺锡 α-Ga₂O₃ 的雾化-气相沉积外延的掺杂效率
本研究使用五水氯化锡(SnCl ${_{{4}}} \cdot 5$ H2O)作为掺杂剂前驱体来形成n型$\alpha $ -Ga2O3。X 射线衍射(XRD)和高分辨率透射电子显微镜(HR-TEM)证实了单晶$\alpha $ -Ga2O3:SnCl ${_{{4}}} H2O的形成。\cdot 5$ H2O 外延层是利用雾状化学气相沉积(mist-CVD)技术在 r 平面蓝宝石衬底上生长出来的。当掺杂的Sn原子浓度相同时,$\alpha $ -Ga2O3:SnCl ${_{{4}}}\cdot 5$ H2O的电子浓度也相同。\cdot 5$ H2O 的电子浓度高于 $\alpha $ -Ga2O3:SnCl ${_{{2}}} H2O 的电子浓度。\cdot 2$ H2O。$α $ -Ga2O3:SnCl ${_{{4}} $\cdot 5$ H2O 的热分解温度较低,残留物也较少。}\热重分析证实了这一点。通过 X 射线光电子能谱(XPS)观察到的 Sn $3d_{5/2}$ 结合能谱显示,SnCl ${_{4}}\cdot 5$ H2O 提供的 $Sn^{4+}$ 比 SnCl ${_{{2}} 提供的 $Sn^{4+}$ 多。\cdot 2$ H2O 提供更多的 $Sn^{4+}$。$\alpha $ -Ga2O3:SnCl ${_{{4}} 的比接触电阻率为}\cdot 5$ H2O达到1.62/times 10{^{-}5 }~\Omega $ -cm2,掺杂浓度为10^{20}$ cm $^{-}3 $ Sn。此外,$\alpha $ -Ga2O3:SnCl ${_{{4}} 的功率因数(PFoM)也很高。}\cdot 5$ H2O 基横向肖特基势垒二极管(SBD)的功率为 0.356 GW/cm2,与 $\beta $ -Ga2O3 基 SBD 相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
Editorial Table of Contents Editorial IEEE Transactions on Semiconductor Manufacturing Information for Authors Call for Papers for a Special Issue of IEEE Transactions on Electron Devices on "Wide Band Gap Semiconductors for Automotive Applications"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1