Nurul Hani Mardi, Lee Woen Ean, Marlinda Abdul Malek, Kok Hua Chua, Ali Najah Ahmed
{"title":"Water footprint assessment at the ultra-supercritical (USC) coal power plant in Malaysia","authors":"Nurul Hani Mardi, Lee Woen Ean, Marlinda Abdul Malek, Kok Hua Chua, Ali Najah Ahmed","doi":"10.1007/s10661-024-13394-4","DOIUrl":null,"url":null,"abstract":"<div><p>The power generation sector consumes significant amounts of water. A comprehensive water footprint (WF) assessment helps identify and monitor the processes consuming high amounts of water. This research evaluates the water footprint (WF) of electricity generation at a USC coal power plant, integrating on-site data for enhanced reliability. Based on the Water Footprint Assessment Manual, the electricity WF includes supply chain and operational WF. This study exhibits that the average electricity WF is 2.96 m<sup>3</sup>/MWh. The supply chain WF accounts for 95% of the total electricity WF, while operational WF contributes 5%. The blue WF accounts for 9.9% of the total electricity WF, while the grey water footprint accounts for 90.1%. The results of this research show a significant difference in the distribution of blue and grey WF in electricity WF. Factors contributing to the differences include the amount of coal consumption, power generation technology and power plant cooling technology. Furthermore, this study shows that grey WF depends on the concentration of pollutants considered. This research also conducted a WF impact assessment on local water resources and found that the blue and grey operational WF contributes to low impact. Monitoring the water footprint associated with electricity generation at a coal power plant would provide a more enhanced understanding of water consumption patterns, which could help influence water resources management.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"196 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13394-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The power generation sector consumes significant amounts of water. A comprehensive water footprint (WF) assessment helps identify and monitor the processes consuming high amounts of water. This research evaluates the water footprint (WF) of electricity generation at a USC coal power plant, integrating on-site data for enhanced reliability. Based on the Water Footprint Assessment Manual, the electricity WF includes supply chain and operational WF. This study exhibits that the average electricity WF is 2.96 m3/MWh. The supply chain WF accounts for 95% of the total electricity WF, while operational WF contributes 5%. The blue WF accounts for 9.9% of the total electricity WF, while the grey water footprint accounts for 90.1%. The results of this research show a significant difference in the distribution of blue and grey WF in electricity WF. Factors contributing to the differences include the amount of coal consumption, power generation technology and power plant cooling technology. Furthermore, this study shows that grey WF depends on the concentration of pollutants considered. This research also conducted a WF impact assessment on local water resources and found that the blue and grey operational WF contributes to low impact. Monitoring the water footprint associated with electricity generation at a coal power plant would provide a more enhanced understanding of water consumption patterns, which could help influence water resources management.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.