Fungus-Yeast Tri-culture System for In Situ Cellulase Production, Biodetoxification, and Bioethanol Production Using Rice Straw with Cyclic Shifting of Temperature Strategy

IF 3.1 3区 工程技术 Q3 ENERGY & FUELS BioEnergy Research Pub Date : 2024-11-25 DOI:10.1007/s12155-024-10806-8
Suraj K. Panda, Soumen K. Maiti
{"title":"Fungus-Yeast Tri-culture System for In Situ Cellulase Production, Biodetoxification, and Bioethanol Production Using Rice Straw with Cyclic Shifting of Temperature Strategy","authors":"Suraj K. Panda,&nbsp;Soumen K. Maiti","doi":"10.1007/s12155-024-10806-8","DOIUrl":null,"url":null,"abstract":"<div><p>The current study employs a tri-culture system, involving <i>Trichoderma reesei</i> and <i>Penicillium janthinellum</i> for cellulase production followed by the utilization of <i>Saccharomyces cerevisiae</i> for bioethanol production using pretreated rice straw as substrate. The fungal co-culture resulted in the production of maximum cellulase enzyme with the following activities: FPase, 1.09 IU/mL; CMCase, 24.47 IU/mL; beta-glucosidase, 4.74 IU/mL; and xylanase, 36.74 IU/mL respectively. Furthermore, the current work also represents a lesser studied aspect, concomitant biodetoxification, and cellulase production. Both <i>T. reesei</i> and <i>P. janthinellum</i> were able to metabolize the acid pretreatment by-products such as formic acid, acetic acid, HMF, and furfural. By implementing a cyclic shifting of temperature strategy, a maximum bioethanol titer of 17.05 g/L with a productivity of 0.405 g/(L × h) was achieved using the tri-culture system. This represents a 3.7-fold improvement compared to the SSF process conducted at the mutual optimum incubation temperature of 37 °C. This study presents a scope for a one-step process for fungal cellulase production and biodetoxification of the lignocellulose pretreated hydrolysate to avail an inhibitor-free medium for subsequent yeast co-culture for bioethanol production.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12155-024-10806-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10806-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The current study employs a tri-culture system, involving Trichoderma reesei and Penicillium janthinellum for cellulase production followed by the utilization of Saccharomyces cerevisiae for bioethanol production using pretreated rice straw as substrate. The fungal co-culture resulted in the production of maximum cellulase enzyme with the following activities: FPase, 1.09 IU/mL; CMCase, 24.47 IU/mL; beta-glucosidase, 4.74 IU/mL; and xylanase, 36.74 IU/mL respectively. Furthermore, the current work also represents a lesser studied aspect, concomitant biodetoxification, and cellulase production. Both T. reesei and P. janthinellum were able to metabolize the acid pretreatment by-products such as formic acid, acetic acid, HMF, and furfural. By implementing a cyclic shifting of temperature strategy, a maximum bioethanol titer of 17.05 g/L with a productivity of 0.405 g/(L × h) was achieved using the tri-culture system. This represents a 3.7-fold improvement compared to the SSF process conducted at the mutual optimum incubation temperature of 37 °C. This study presents a scope for a one-step process for fungal cellulase production and biodetoxification of the lignocellulose pretreated hydrolysate to avail an inhibitor-free medium for subsequent yeast co-culture for bioethanol production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用稻草循环变换温度策略进行原位纤维素酶生产、生物解毒和生物乙醇生产的真菌-酵母三培养系统
目前的研究采用了一种三元共培养系统,即先利用毛霉菌和青霉生产纤维素酶,再利用酿酒酵母菌以预处理过的稻草为底物生产生物乙醇。真菌共培养产生了最大的纤维素酶,其活性如下:FP酶,1.09 IU/mL;CMC酶,24.47 IU/mL;β-葡萄糖苷酶,4.74 IU/mL;木聚糖酶,36.74 IU/mL。此外,目前的工作还体现了一个研究较少的方面,即同时进行生物解毒和纤维素酶生产。T.reesei和P.janthinellum都能代谢酸预处理副产品,如甲酸、乙酸、HMF和糠醛。通过实施温度周期性变化策略,三培养系统的生物乙醇滴度最高可达 17.05 克/升,生产率为 0.405 克/(升×小时)。这表明,与在 37 °C 共同最佳培养温度下进行的 SSF 工艺相比,提高了 3.7 倍。这项研究为一步法生产真菌纤维素酶和对木质纤维素预处理水解物进行生物解毒提供了可能,从而为随后的酵母共培养生物乙醇生产提供了无抑制剂培养基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
期刊最新文献
Fungus-Yeast Tri-culture System for In Situ Cellulase Production, Biodetoxification, and Bioethanol Production Using Rice Straw with Cyclic Shifting of Temperature Strategy Enhancing Surface Properties of Circular Carbon Biochar Derived from Spent Coffee Beans Through ZnCl2/KOH Activation Enhanced Carbon Dioxide Biofixation and Lipid Production of Chlorella sp. Using Alkali Absorber and Strategic Carbon Dioxide Supply Third-Generation L-Lactic Acid Biorefinery Approaches: Exploring the Viability of Macroalgae Detritus Microalga Growth-Promoting Bacteria as Strategy to Improve CO2 Removal from Biogas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1