Swelling-Shrinking Behavior of a Hydrogel with a CO2-Switchable Volume Phase Transition Temperature.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2024-11-23 DOI:10.1002/marc.202400772
Sarah R Sergi, James J Hastie, Finlay J M Smith, Abigail G Devlin, Elizabeth G Bury, Mara L Paterson, Sophia B Kosednar, Lauren S Sefcik, Melissa B Gordon
{"title":"Swelling-Shrinking Behavior of a Hydrogel with a CO<sub>2</sub>-Switchable Volume Phase Transition Temperature.","authors":"Sarah R Sergi, James J Hastie, Finlay J M Smith, Abigail G Devlin, Elizabeth G Bury, Mara L Paterson, Sophia B Kosednar, Lauren S Sefcik, Melissa B Gordon","doi":"10.1002/marc.202400772","DOIUrl":null,"url":null,"abstract":"<p><p>Macromolecules exhibit rich phase behavior that may be exploited for advanced material design. In particular, the volume phase transition in certain crosslinked hydrogels is a key property controlling the transition between a collapsed/dehydrated and a swollen/hydrated state, thereby regulating the release and absorption of water via a temperature change. In this work, a simple and tunable system exhibiting a carbon dioxide (CO<sub>2</sub>)-switchable volume phase transition is introduced, which displays isothermal swelling-shrinking behavior that is activated by addition and removal of CO<sub>2,</sub> respectively. Through systematic compositional studies, shifts in phase transition temperatures of up to 8.6 °C are measured upon CO<sub>2</sub> exposure, which enables pronounced isothermal swelling in response to CO<sub>2</sub>, reaching up to a fivefold increase in mass. The shift in transition temperature and the extent of swelling are controlled by the hydrogel composition, thus enabling the transition temperature and swelling degree to be tuned a priori for a particular application. Controlled release experiments from these gels upon a CO<sub>2</sub>-induced phase transition suggest viability for drug delivery applications. It is anticipated that this work will motivate and expand efforts to exploit phase behavior for smart material development.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400772"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400772","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Macromolecules exhibit rich phase behavior that may be exploited for advanced material design. In particular, the volume phase transition in certain crosslinked hydrogels is a key property controlling the transition between a collapsed/dehydrated and a swollen/hydrated state, thereby regulating the release and absorption of water via a temperature change. In this work, a simple and tunable system exhibiting a carbon dioxide (CO2)-switchable volume phase transition is introduced, which displays isothermal swelling-shrinking behavior that is activated by addition and removal of CO2, respectively. Through systematic compositional studies, shifts in phase transition temperatures of up to 8.6 °C are measured upon CO2 exposure, which enables pronounced isothermal swelling in response to CO2, reaching up to a fivefold increase in mass. The shift in transition temperature and the extent of swelling are controlled by the hydrogel composition, thus enabling the transition temperature and swelling degree to be tuned a priori for a particular application. Controlled release experiments from these gels upon a CO2-induced phase transition suggest viability for drug delivery applications. It is anticipated that this work will motivate and expand efforts to exploit phase behavior for smart material development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有二氧化碳可切换体积相变温度的水凝胶的溶胀-收缩行为
大分子表现出丰富的相行为,可用于先进材料的设计。特别是,某些交联水凝胶的体积相变是控制塌陷/脱水状态与膨胀/水合状态之间转变的关键特性,从而通过温度变化调节水分的释放和吸收。在这项研究中,介绍了一种简单且可调的系统,该系统表现出二氧化碳(CO2)-可切换的体积相变,通过添加和移除二氧化碳分别激活该系统的等温膨胀-收缩行为。通过系统的成分研究,测量到在接触二氧化碳时,相变温度最高会发生 8.6 °C的转变,这使得二氧化碳能够产生明显的等温膨胀,质量最多可增加五倍。转变温度的变化和溶胀程度受水凝胶成分的控制,因此可以根据特定应用事先调整转变温度和溶胀程度。这些凝胶在二氧化碳诱导相变时的可控释放实验表明,它们在药物输送应用方面具有可行性。预计这项工作将推动和扩大利用相行为开发智能材料的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Anisole Processible n-Type Conjugated Polymers Synthesized via C─H/C─H Oxidative Direct Arylation Polycondensation for Organic Electrochemical Transistors. Exploiting Seeded RAFT Polymerization for the Preparation of Graft Copolymer Nanoparticles. Polyphenols and Functionalized Hydrogels for Osteoporotic Bone Regeneration. Coacervate Droplets as Biomimetic Models for Designing Cell-Like Microreactors. Large-scale Conformational Changes of Diindole Functional Groups Driven by Cation-π Interactions and the Toughening Mechanism of Thermosets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1