Advancing plant single-cell genomics with foundation models.

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-11-22 DOI:10.1016/j.pbi.2024.102666
Tran N Chau, Xuan Wang, John M McDowell, Song Li
{"title":"Advancing plant single-cell genomics with foundation models.","authors":"Tran N Chau, Xuan Wang, John M McDowell, Song Li","doi":"10.1016/j.pbi.2024.102666","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell genomics, combined with advanced AI models, hold transformative potential for understanding complex biological processes in plants. This article reviews deep-learning approaches in single-cell genomics, focusing on foundation models, a type of large-scale, pretrained, multi-purpose generative AI models. We explore how these models, such as Generative Pre-trained Transformers (GPT), Bidirectional Encoder Representations from Transformers (BERT), and other Transformer-based architectures, are applied to extract meaningful biological insights from diverse single-cell datasets. These models address challenges in plant single-cell genomics, including improved cell-type annotation, gene network modeling, and multi-omics integration. Moreover, we assess the use of Generative Adversarial Networks (GANs) and diffusion models, focusing on their capacity to generate high-fidelity synthetic single-cell data, mitigate dropout events, and handle data sparsity and imbalance. Together, these AI-driven approaches hold immense potential to enhance research in plant genomics, facilitating discoveries in crop resilience, productivity, and stress adaptation.</p>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"102666"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pbi.2024.102666","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell genomics, combined with advanced AI models, hold transformative potential for understanding complex biological processes in plants. This article reviews deep-learning approaches in single-cell genomics, focusing on foundation models, a type of large-scale, pretrained, multi-purpose generative AI models. We explore how these models, such as Generative Pre-trained Transformers (GPT), Bidirectional Encoder Representations from Transformers (BERT), and other Transformer-based architectures, are applied to extract meaningful biological insights from diverse single-cell datasets. These models address challenges in plant single-cell genomics, including improved cell-type annotation, gene network modeling, and multi-omics integration. Moreover, we assess the use of Generative Adversarial Networks (GANs) and diffusion models, focusing on their capacity to generate high-fidelity synthetic single-cell data, mitigate dropout events, and handle data sparsity and imbalance. Together, these AI-driven approaches hold immense potential to enhance research in plant genomics, facilitating discoveries in crop resilience, productivity, and stress adaptation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基础模型推进植物单细胞基因组学。
单细胞基因组学与先进的人工智能模型相结合,为了解植物的复杂生物过程带来了变革性的潜力。本文回顾了单细胞基因组学中的深度学习方法,重点关注基础模型,这是一种大规模、预训练、多用途的生成式人工智能模型。我们探讨了这些模型,如生成预训练变换器(GPT)、变换器双向编码器表征(BERT)和其他基于变换器的架构,是如何应用于从各种单细胞数据集中提取有意义的生物学见解的。这些模型解决了植物单细胞基因组学的难题,包括改进细胞类型注释、基因网络建模和多组学整合。此外,我们还评估了生成式对抗网络(GANs)和扩散模型的使用情况,重点关注它们生成高保真合成单细胞数据、减少丢失事件以及处理数据稀疏性和不平衡性的能力。这些人工智能驱动的方法具有巨大的潜力,可以共同加强植物基因组学研究,促进作物抗逆性、生产力和胁迫适应性方面的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Advancing plant single-cell genomics with foundation models. The gene function prediction challenge: Large language models and knowledge graphs to the rescue. Sensing host and environmental cues by fungal GPCRs. Grass awns: Morphological diversity arising from developmental constraint New perspectives of post-GWAS analyses: From markers to causal genes for more precise crop breeding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1