PyWRKY40 negatively regulates anthocyanin synthesis in pear fruit.

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Science Pub Date : 2024-11-21 DOI:10.1016/j.plantsci.2024.112323
Xuefeng Zhang, He Zhang, Mingxin Yin, Siyang Gao, Mingyang Xu, Guodong Du
{"title":"PyWRKY40 negatively regulates anthocyanin synthesis in pear fruit.","authors":"Xuefeng Zhang, He Zhang, Mingxin Yin, Siyang Gao, Mingyang Xu, Guodong Du","doi":"10.1016/j.plantsci.2024.112323","DOIUrl":null,"url":null,"abstract":"<p><p>The deposition of anthocyanin plays a crucial role in fruit pigmentation and serves as the primary determinant of pear quality. Various factors influence the synthesis of anthocyanins, with salicylic acid playing a significant role among them. However, the mechanism by which salicylic acid affects anthocyanin synthesis remains unclear. Our study identifies the transcription factor PyWRKY40 as a pivotal regulator of SA-mediated anthocyanin synthesis in the nucleus. The negative regulatory function of this factor lies in its ability to suppress anthocyanin synthesis, thereby exerting an influence on fruit coloration. We have confirmed the direct binding of PyWRKY40 to the PyDFR promoter through Y1H and EMSA experiments. The findings elucidate a signaling regulatory module, PyWRKY40-PyDFR, which is responsive to SA and enhances fruit pigmentation by modulating anthocyanin metabolism. This insight offers a viable approach to enhancing fruit coloration and improving the overall quality of pear fruits.</p>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":" ","pages":"112323"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plantsci.2024.112323","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The deposition of anthocyanin plays a crucial role in fruit pigmentation and serves as the primary determinant of pear quality. Various factors influence the synthesis of anthocyanins, with salicylic acid playing a significant role among them. However, the mechanism by which salicylic acid affects anthocyanin synthesis remains unclear. Our study identifies the transcription factor PyWRKY40 as a pivotal regulator of SA-mediated anthocyanin synthesis in the nucleus. The negative regulatory function of this factor lies in its ability to suppress anthocyanin synthesis, thereby exerting an influence on fruit coloration. We have confirmed the direct binding of PyWRKY40 to the PyDFR promoter through Y1H and EMSA experiments. The findings elucidate a signaling regulatory module, PyWRKY40-PyDFR, which is responsive to SA and enhances fruit pigmentation by modulating anthocyanin metabolism. This insight offers a viable approach to enhancing fruit coloration and improving the overall quality of pear fruits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PyWRKY40 负向调节梨果中花青素的合成。
花青素的沉淀在果实色素沉淀中起着至关重要的作用,也是决定梨品质的主要因素。影响花青素合成的因素有很多,其中水杨酸起着重要作用。然而,水杨酸影响花青素合成的机制仍不清楚。我们的研究发现,转录因子 PyWRKY40 是细胞核中水杨酸介导的花青素合成的关键调节因子。该因子的负调控功能在于其抑制花青素合成的能力,从而对果实着色产生影响。我们通过 Y1H 和 EMSA 实验证实了 PyWRKY40 与 PyDFR 启动子的直接结合。研究结果阐明了一个信号调控模块--PyWRKY40-PyDFR,该模块对 SA 有反应,并通过调节花青素代谢增强果实色素沉着。这一发现为增强果实着色和提高梨果的整体质量提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
期刊最新文献
Characterization of pecan PEBP family genes and the potential regulation role of CiPEBP-like1 in fatty acid synthesis. PyWRKY40 negatively regulates anthocyanin synthesis in pear fruit. Increase of histone acetylation by suberoylanilide hydroxamic acid enhances microspore reprogramming and expression of somatic embryogenesis transcription factors in Brassica napus. Cloning and Functional Characterization of Volatile-terpene Synthase Genes from Chamaecyparis obtusa var. formosana. SlTDF1: A Key Regulator of Tapetum Degradation and Pollen Development in Tomato.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1