Michal Sakmár, Ján Kozempel, Jan Kučka, Tereza Janská, Matěj Štíbr, Lukáš Ondrák, Kateřina Ondrák Fialová, Martin Vlk, Luděk Šefc, Frank Bruchertseifer, Alfred Morgenstern
{"title":"In vitro and in vivo study of <sup>221</sup>Fr and <sup>213</sup>Bi progeny release from the <sup>225</sup>Ac-labelled TiO<sub>2</sub> nanoparticles.","authors":"Michal Sakmár, Ján Kozempel, Jan Kučka, Tereza Janská, Matěj Štíbr, Lukáš Ondrák, Kateřina Ondrák Fialová, Martin Vlk, Luděk Šefc, Frank Bruchertseifer, Alfred Morgenstern","doi":"10.1016/j.nucmedbio.2024.108973","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Targeted alpha therapy (TAT) is an effective option for cancer treatment. To maximize its efficacy and minimize side effects, carriers must deliver radionuclides to target tissues. Most of the nuclides used in TAT decay via the alpha cascade, producing several radioactive daughter nuclei with sufficient energy to escape from the original carrier. Therefore, studying these daughter atoms is crucial in the search for new carriers. Nanoparticles have potential as carriers due to their structure, which can prevent the escape of daughter atoms and reduce radiation exposure to non-target tissues. This work focuses on determining the released activity of <sup>221</sup>Fr and <sup>213</sup>Bi resulting from the decay of <sup>225</sup>Ac labelled TiO<sub>2</sub> nanoparticles.</p><p><strong>Results: </strong>Labelling of TiO<sub>2</sub> nanoparticles has shown high sorption rates of <sup>225</sup>Ac and its progeny, <sup>221</sup>Fr and <sup>213</sup>Bi, with over 92 % of activities sorbed on the nanoparticle surface for all measured radionuclides. However, in the quasi-dynamic in vitro system, the released activity of <sup>221</sup>Fr and <sup>213</sup>Bi is strongly dependent on the nanoparticles concentration, ranging from 15 % for a concentration of 1 mg/mL to approximately 50 % for a nanoparticle concentration of 10 μg/mL in saline solution. The released activities of <sup>213</sup>Bi were lower, with a maximum value of around 20 % for concentrations of 0.05, 0.025, and 0.01 mg/mL. The leakage of <sup>225</sup>Ac and its progeny was tested in various biological matrices. Minimal released activity was measured in saline at around 10 % after 48 h, while the maximum activity was measured in blood serum and plasma at 20 %. The amount of <sup>225</sup>Ac released into the media was minimal (<3 %). The in vitro results were confirmed in a healthy mouse model. The difference in %ID/g was clearly visible immediately after dissection and again after 6 h when <sup>213</sup>Bi reached equilibrium with <sup>225</sup>Ac.</p><p><strong>Conclusion: </strong>The study verified the potential release of <sup>225</sup>Ac progeny from the labelled TiO<sub>2</sub> nanoparticles. Experiments were performed to determine the dependence of released activity on nanoparticle concentration and the biological environment. The results demonstrated the high stability of the prepared <sup>225</sup>Ac@TiO<sub>2</sub> NPs and the potential release of progeny over time. In vivo studies confirmed our hypothesis. The data obtained suggest that the daughter atoms can escape from the original carrier and follow their own biological pathways in the organism.</p>","PeriodicalId":19363,"journal":{"name":"Nuclear medicine and biology","volume":"140-141 ","pages":"108973"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nucmedbio.2024.108973","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Targeted alpha therapy (TAT) is an effective option for cancer treatment. To maximize its efficacy and minimize side effects, carriers must deliver radionuclides to target tissues. Most of the nuclides used in TAT decay via the alpha cascade, producing several radioactive daughter nuclei with sufficient energy to escape from the original carrier. Therefore, studying these daughter atoms is crucial in the search for new carriers. Nanoparticles have potential as carriers due to their structure, which can prevent the escape of daughter atoms and reduce radiation exposure to non-target tissues. This work focuses on determining the released activity of 221Fr and 213Bi resulting from the decay of 225Ac labelled TiO2 nanoparticles.
Results: Labelling of TiO2 nanoparticles has shown high sorption rates of 225Ac and its progeny, 221Fr and 213Bi, with over 92 % of activities sorbed on the nanoparticle surface for all measured radionuclides. However, in the quasi-dynamic in vitro system, the released activity of 221Fr and 213Bi is strongly dependent on the nanoparticles concentration, ranging from 15 % for a concentration of 1 mg/mL to approximately 50 % for a nanoparticle concentration of 10 μg/mL in saline solution. The released activities of 213Bi were lower, with a maximum value of around 20 % for concentrations of 0.05, 0.025, and 0.01 mg/mL. The leakage of 225Ac and its progeny was tested in various biological matrices. Minimal released activity was measured in saline at around 10 % after 48 h, while the maximum activity was measured in blood serum and plasma at 20 %. The amount of 225Ac released into the media was minimal (<3 %). The in vitro results were confirmed in a healthy mouse model. The difference in %ID/g was clearly visible immediately after dissection and again after 6 h when 213Bi reached equilibrium with 225Ac.
Conclusion: The study verified the potential release of 225Ac progeny from the labelled TiO2 nanoparticles. Experiments were performed to determine the dependence of released activity on nanoparticle concentration and the biological environment. The results demonstrated the high stability of the prepared 225Ac@TiO2 NPs and the potential release of progeny over time. In vivo studies confirmed our hypothesis. The data obtained suggest that the daughter atoms can escape from the original carrier and follow their own biological pathways in the organism.
期刊介绍:
Nuclear Medicine and Biology publishes original research addressing all aspects of radiopharmaceutical science: synthesis, in vitro and ex vivo studies, in vivo biodistribution by dissection or imaging, radiopharmacology, radiopharmacy, and translational clinical studies of new targeted radiotracers. The importance of the target to an unmet clinical need should be the first consideration. If the synthesis of a new radiopharmaceutical is submitted without in vitro or in vivo data, then the uniqueness of the chemistry must be emphasized.
These multidisciplinary studies should validate the mechanism of localization whether the probe is based on binding to a receptor, enzyme, tumor antigen, or another well-defined target. The studies should be aimed at evaluating how the chemical and radiopharmaceutical properties affect pharmacokinetics, pharmacodynamics, or therapeutic efficacy. Ideally, the study would address the sensitivity of the probe to changes in disease or treatment, although studies validating mechanism alone are acceptable. Radiopharmacy practice, addressing the issues of preparation, automation, quality control, dispensing, and regulations applicable to qualification and administration of radiopharmaceuticals to humans, is an important aspect of the developmental process, but only if the study has a significant impact on the field.
Contributions on the subject of therapeutic radiopharmaceuticals also are appropriate provided that the specificity of labeled compound localization and therapeutic effect have been addressed.