Introduction: Radiolanthanides 132La and 135La form a promising chemically matched theranostic pair. With a half-life of 18.95 h, 135La acts as the therapeutic isotope as it releases approximately 11 Auger electrons per decay, making it compatible with targeted Auger electron therapy (TAET), whereas 132La with half-life of 4.58 h undergoes positron emission making it compatible with imaging via positron emission tomography (PET).
Methods: 132/135La were produced via irradiation of natural barium targets (99.9 %) with 12.8 MeV protons. A two-step separation scheme using extraction chromatographic resin TK200 (50-100 μm) and cation exchange resin Dowex 50Wx4 (200-400 mesh) was designed. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify non-radioactive impurities in each fraction of the separation method. The distribution coefficients of La3+ in HNO3 on the TK200 resin and on both Dowex 50Wx8 (200-400 mesh) and Dowex 50Wx4 resins in ammonium α-hydroxyisobutyrate (pH 4.8) were determined, respectively.
Results: This novel separation scheme allowed for reliable separation of [132/135La]La3+ from the Ba2+ target material, resulting in a high radiochemical yield of 98.3 ± 2.1 % (n = 3) with the final elute being directly compatible with subsequent radiolabeling due to the use of ammonium α-hydroxyisobutyrate to eliminate steps in the radiopharmaceutical synthetic process.