Background
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths, globally. There is a need for novel biomarkers for early detection and novel, effective targeted therapies. Molecular imaging can faithfully visualize, characterize and quantify specific relevant biological processes.
Basic procedure
We performed longitudinal dedicated small-animal positron emission tomography–computed tomography (PET/CT) imaging to analyze changes in glucose metabolism using [18F]fluorodeoxyglucose ([18F]FDG), amino acid turnover with [18F]fluoroethyltyrosine ([18F]FET), and chemokine receptor expression using [68Ga]pentixafor targeting CXCR4, during stages of early tumor development, overt HCC and regression. We used two conditional transgenic mouse models of HCC, driven by clinically relevant oncogenes c-MYC (LT2/MYC) or HRASV12 (LT2/RAS). Conditional doxycycline-regulated mouse models, enable liver-specific oncogene activation or inhibition, leading to liver tumor development and regression, respectively. Correlation of our PET/CT findings with our gene expression and metabolomics data and with histological analyses followed.
Main findings
We show PET/CT identifies HCC stage-specific and oncogene-specific molecular changes that may serve as potential novel biomarkers and therapeutic targets. Glucose metabolism and CXCR4 chemokine expression are differentially deregulated during HCC development in an oncogene-specific manner. Our [18F]FDG results correlated with glucose transporter GLUT1 gene expression and with our metabolomics data. Increased expression of CXCR4 and CD68 inflammatory markers mirrored [68Ga]pentixafor results in LT2/MYC mice. FET-based measurement of amino acid turnover are insensitive to stages of HCC-development, in our studies. Concurrently, no significant changes in expression of tyrosine metabolism genes were observed.
Principal conclusions
Our study highlights that identified changes in targeted molecular imaging can facilitate a better understanding of underlying biological processes and may help guide novel oncogene-specific targeted anti-tumor therapies in HCC, with promising translational potential.