Tianjun Liu, Jianzhou Meng, Bin Wang, Xiaohui Li, Qian Wang, Sihan Liu, Yan Guan, Xiao Wang, Yishuang Liu
{"title":"Identification of BMVC-8C3O as a novel Pks13 inhibitor with anti-tuberculosis activity.","authors":"Tianjun Liu, Jianzhou Meng, Bin Wang, Xiaohui Li, Qian Wang, Sihan Liu, Yan Guan, Xiao Wang, Yishuang Liu","doi":"10.1016/j.tube.2024.102579","DOIUrl":null,"url":null,"abstract":"<p><p>Given the increasing prevalence of drug-resistant tuberculosis (TB), there is an urgent demand in developing novel anti-TB medications with highly effective, safe, and utilize innovative mechanisms of action. Blocking the mycolic acid synthesis pathway is well-established to be a significant strategy in developing anti-TB drugs, and Pks13 was identified as a crucial enzyme in this process. Importantly, the modes of action of recognized Pks13 inhibitors differ from traditional anti-TB medications, highlighting Pks13 as a potential and promising target in drug development within TB treatment. In this study, we discovered a compound named BMVC-8C3O that effectively inhibited the activity of Pks13 with a 6.94 μM IC<sub>50</sub> value. The binding between BMVC-8C3O and Pks13 was validated through surface plasmon resonance (SPR) assay as well as molecular docking analysis. Moreover, the SPR assay showed that the mutation of Asn1640 and Ser1533 resulted in decreased affinity of BMVC-8C3O to Pks13. Additionally, BMVC-8C3O not only exhibited activity against Mycobacterium tuberculosis (MTB), but also displayed potential intracellular anti-TB activity in macrophages. In summary, our findings indicate that BMVC-8C3O holds great potential as a lead compound against TB.</p>","PeriodicalId":23383,"journal":{"name":"Tuberculosis","volume":"150 ","pages":"102579"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tube.2024.102579","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the increasing prevalence of drug-resistant tuberculosis (TB), there is an urgent demand in developing novel anti-TB medications with highly effective, safe, and utilize innovative mechanisms of action. Blocking the mycolic acid synthesis pathway is well-established to be a significant strategy in developing anti-TB drugs, and Pks13 was identified as a crucial enzyme in this process. Importantly, the modes of action of recognized Pks13 inhibitors differ from traditional anti-TB medications, highlighting Pks13 as a potential and promising target in drug development within TB treatment. In this study, we discovered a compound named BMVC-8C3O that effectively inhibited the activity of Pks13 with a 6.94 μM IC50 value. The binding between BMVC-8C3O and Pks13 was validated through surface plasmon resonance (SPR) assay as well as molecular docking analysis. Moreover, the SPR assay showed that the mutation of Asn1640 and Ser1533 resulted in decreased affinity of BMVC-8C3O to Pks13. Additionally, BMVC-8C3O not only exhibited activity against Mycobacterium tuberculosis (MTB), but also displayed potential intracellular anti-TB activity in macrophages. In summary, our findings indicate that BMVC-8C3O holds great potential as a lead compound against TB.
期刊介绍:
Tuberculosis is a speciality journal focusing on basic experimental research on tuberculosis, notably on bacteriological, immunological and pathogenesis aspects of the disease. The journal publishes original research and reviews on the host response and immunology of tuberculosis and the molecular biology, genetics and physiology of the organism, however discourages submissions with a meta-analytical focus (for example, articles based on searches of published articles in public electronic databases, especially where there is lack of evidence of the personal involvement of authors in the generation of such material). We do not publish Clinical Case-Studies.
Areas on which submissions are welcomed include:
-Clinical TrialsDiagnostics-
Antimicrobial resistance-
Immunology-
Leprosy-
Microbiology, including microbial physiology-
Molecular epidemiology-
Non-tuberculous Mycobacteria-
Pathogenesis-
Pathology-
Vaccine development.
This Journal does not accept case-reports.
The resurgence of interest in tuberculosis has accelerated the pace of relevant research and Tuberculosis has grown with it, as the only journal dedicated to experimental biomedical research in tuberculosis.