Bruna Sgarioni, Luane C. Angeli, Matheus R. Andrade, Rubem M.F. Vargas, Eduardo Cassel
{"title":"Supercritical fluid extraction of yerba mate: Decaffeination, purification, encapsulation, and controlled release","authors":"Bruna Sgarioni, Luane C. Angeli, Matheus R. Andrade, Rubem M.F. Vargas, Eduardo Cassel","doi":"10.1016/j.supflu.2024.106456","DOIUrl":null,"url":null,"abstract":"<div><div><em>Ilex paraguariensis</em> is a source of bioactive compounds, which have been demonstrated to mitigate neurological disorders and enhance athletic performance. This study aimed to decaffeinate yerba mate using supercritical fluid extraction, followed by caffeine purification. The purified extract was encapsulated in gelatin via spray drying, and its release profile was evaluated in simulated gastric fluid. A mathematical model was established to describe the release behavior of the encapsulated extract. The characterization of yerba mate leaves and extracts was conducted prior to and following purification via HPLC. The capsules were subjected to analysis using SEM, FTIR e TGA, while the release fluid was examined using ultraviolet spectroscopy. The optimized SFE process produced decaffeinated yerba mate and the resulting extract exhibited a caffeine purity of approximately 87 %. The capsules were observed to possess a spherical morphology and micrometric particle size, and the release profile was found to follow a first-order kinetic model.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"217 ","pages":"Article 106456"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002912","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ilex paraguariensis is a source of bioactive compounds, which have been demonstrated to mitigate neurological disorders and enhance athletic performance. This study aimed to decaffeinate yerba mate using supercritical fluid extraction, followed by caffeine purification. The purified extract was encapsulated in gelatin via spray drying, and its release profile was evaluated in simulated gastric fluid. A mathematical model was established to describe the release behavior of the encapsulated extract. The characterization of yerba mate leaves and extracts was conducted prior to and following purification via HPLC. The capsules were subjected to analysis using SEM, FTIR e TGA, while the release fluid was examined using ultraviolet spectroscopy. The optimized SFE process produced decaffeinated yerba mate and the resulting extract exhibited a caffeine purity of approximately 87 %. The capsules were observed to possess a spherical morphology and micrometric particle size, and the release profile was found to follow a first-order kinetic model.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.