Can we enhance investment with ESG?

IF 7.5 1区 经济学 Q1 BUSINESS, FINANCE International Review of Financial Analysis Pub Date : 2024-11-16 DOI:10.1016/j.irfa.2024.103776
Wanling Rudkin , Charlie X. Cai , You Zhou
{"title":"Can we enhance investment with ESG?","authors":"Wanling Rudkin ,&nbsp;Charlie X. Cai ,&nbsp;You Zhou","doi":"10.1016/j.irfa.2024.103776","DOIUrl":null,"url":null,"abstract":"<div><div>Given evidence of low abnormal returns to ESG stock investment, growth in ESG focused stock investment suggests a wider utility from holding higher ESG performance stocks. We add detail and granularity through a double-sorted portfolio approach across two ESG measures and 24 anomalies. Traditional anomaly factor sort strategies may be enhanced by ESG information to produce an annualised ESG tilted alpha of more than 6% and provide an up to 7% alpha gain over the unconditional factor sort strategy. Investors using our strategies may increase ESG exposure and gain abnormal return with no alpha cost relative to traditional factor investing.</div></div>","PeriodicalId":48226,"journal":{"name":"International Review of Financial Analysis","volume":"97 ","pages":"Article 103776"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Financial Analysis","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1057521924007087","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Given evidence of low abnormal returns to ESG stock investment, growth in ESG focused stock investment suggests a wider utility from holding higher ESG performance stocks. We add detail and granularity through a double-sorted portfolio approach across two ESG measures and 24 anomalies. Traditional anomaly factor sort strategies may be enhanced by ESG information to produce an annualised ESG tilted alpha of more than 6% and provide an up to 7% alpha gain over the unconditional factor sort strategy. Investors using our strategies may increase ESG exposure and gain abnormal return with no alpha cost relative to traditional factor investing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们能否通过环境、社会和公司治理来加强投资?
鉴于有证据表明 ESG 股票投资的异常回报率较低,ESG 重点股票投资的增长表明持有 ESG 表现较好的股票具有更广泛的效用。我们通过对两种 ESG 衡量标准和 24 种异常情况进行双重排序的投资组合方法,增加了细节和粒度。传统的异常因子排序策略可通过 ESG 信息得到增强,产生超过 6% 的年化 ESG 倾斜阿尔法,与无条件因子排序策略相比,阿尔法收益高达 7%。与传统的因子投资相比,使用我们的策略的投资者可以增加 ESG 风险敞口,并在不付出阿尔法成本的情况下获得异常回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.80%
发文量
366
期刊介绍: The International Review of Financial Analysis (IRFA) is an impartial refereed journal designed to serve as a platform for high-quality financial research. It welcomes a diverse range of financial research topics and maintains an unbiased selection process. While not limited to U.S.-centric subjects, IRFA, as its title suggests, is open to valuable research contributions from around the world.
期刊最新文献
An asymmetric volatility analysis of the negative oil price during the first COVID-19 wave Wage risk and portfolio choice: The role of correlated returns Assessing Firm ESG Performance Through Corporate Survival: The Moderating Role of Firm Size In the shadows of opacity: Firm information quality and latent factor model performance Uncertainty, macroeconomic activity and commodity price: A global analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1