Spatial Coupling of Photocatalytic CO2 Reduction and Selective Oxidation on Covalent Triazine Framework/ZnIn2S4 Core–Shell Structures

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-25 DOI:10.1002/adfm.202417279
Qi Li, Xiang Li, Mang Zheng, Fanqi Luo, Liping Zhang, Bin Zhang, Baojiang Jiang
{"title":"Spatial Coupling of Photocatalytic CO2 Reduction and Selective Oxidation on Covalent Triazine Framework/ZnIn2S4 Core–Shell Structures","authors":"Qi Li, Xiang Li, Mang Zheng, Fanqi Luo, Liping Zhang, Bin Zhang, Baojiang Jiang","doi":"10.1002/adfm.202417279","DOIUrl":null,"url":null,"abstract":"Photocatalytic CO<sub>2</sub> reduction coupled with alcohol oxidation to aldehyde presents a promising strategy for the simultaneous production of fuels and valuable chemicals. The efficiency of the coupled photocatalytic reactions remains low due to poor charge separation, difficulty in CO<sub>2</sub> activation, and uncontrolled compatibility between reactions. This work presents S-bridged covalent triazine framework (SCTF) core-ZnIn<sub>2</sub>S<sub>4</sub> shell photocatalysts for simultaneous CO<sub>2</sub> reduction and selective furfural synthesis at distinct active sites. As evidenced by in situ X-ray photoelectron spectroscopy and Kelvin probe force microscopy, photogenerated electrons in the composite photocatalysts transfer from the ZnIn<sub>2</sub>S<sub>4</sub> shell to the SCTF core, improving charge separation. Experimental and theoretical results confirm that the presence of pyridine N atoms (Lewis basic sites) in SCTF enhances CO<sub>2</sub> adsorption, thereby reducing the energy barrier for *COOH generation and promoting *CO production. Meanwhile, furfuryl alcohol oxidation and deprotonation occur on ZnIn<sub>2</sub>S<sub>4</sub> by consuming photogenerated holes, which in turn benefits the conversion of CO<sub>2</sub> to CO. As a result, the optimized SCTF/ZnIn<sub>2</sub>S<sub>4</sub>-0.2 core/shell photocatalyst exhibited a superior CO production yield of 263.5 µmol g<sup>−1</sup> and 95% conversion of furfuryl alcohol to aldehyde under simulated sunlight irradiation.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"80 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417279","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic CO2 reduction coupled with alcohol oxidation to aldehyde presents a promising strategy for the simultaneous production of fuels and valuable chemicals. The efficiency of the coupled photocatalytic reactions remains low due to poor charge separation, difficulty in CO2 activation, and uncontrolled compatibility between reactions. This work presents S-bridged covalent triazine framework (SCTF) core-ZnIn2S4 shell photocatalysts for simultaneous CO2 reduction and selective furfural synthesis at distinct active sites. As evidenced by in situ X-ray photoelectron spectroscopy and Kelvin probe force microscopy, photogenerated electrons in the composite photocatalysts transfer from the ZnIn2S4 shell to the SCTF core, improving charge separation. Experimental and theoretical results confirm that the presence of pyridine N atoms (Lewis basic sites) in SCTF enhances CO2 adsorption, thereby reducing the energy barrier for *COOH generation and promoting *CO production. Meanwhile, furfuryl alcohol oxidation and deprotonation occur on ZnIn2S4 by consuming photogenerated holes, which in turn benefits the conversion of CO2 to CO. As a result, the optimized SCTF/ZnIn2S4-0.2 core/shell photocatalyst exhibited a superior CO production yield of 263.5 µmol g−1 and 95% conversion of furfuryl alcohol to aldehyde under simulated sunlight irradiation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共价三嗪框架/ZnIn2S4 核壳结构上光催化二氧化碳还原和选择性氧化的空间耦合
光催化二氧化碳还原与酒精氧化成醛反应是一种同时生产燃料和有价值化学品的可行策略。由于电荷分离不良、二氧化碳活化困难以及反应之间的兼容性不可控,耦合光催化反应的效率仍然很低。本研究提出了 S 桥接共价三嗪框架(SCTF)核-ZnIn2S4 壳光催化剂,可在不同的活性位点同时进行二氧化碳还原和选择性糠醛合成。原位 X 射线光电子能谱和开尔文探针力显微镜证明,复合光催化剂中的光生电子从 ZnIn2S4 外壳转移到 SCTF 内核,从而改善了电荷分离。实验和理论结果证实,SCTF 中吡啶 N 原子(路易斯碱性位点)的存在增强了对 CO2 的吸附,从而降低了 *COOH 生成的能量障碍,促进了 *CO 的生成。同时,糠醇在 ZnIn2S4 上通过消耗光生空穴而发生氧化和去质子化,这反过来又有利于 CO2 向 CO 的转化。因此,优化的 SCTF/ZnIn2S4-0.2 核/壳光催化剂在模拟太阳光照射下的 CO 产率高达 263.5 µmol g-1,糠醇到醛的转化率高达 95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Synergistic Strategy toward Enhancing Photosynthesizing Reactive Oxygen Species of Covalent Organic Frameworks Li, Ag Co-Doping Enables Efficient Kesterite Solar Cell with a High Fill Factor of 74.30% Skin-Inspired in-Sensor Encoding of Strain Vector Using Tunable Quantum Geometry Sulfur Vacancy-Rich MoS2 Flower-Like Microsphere with Synchronously Tunable Electromagnetic and Chemical Effects for Boosting Semiconductor SERS Improved Anchoring of Self-Assembled Monolayer on Hydroxylated NiOx Film Surface for Efficient and Stable Inverted Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1