Alessia Cugudda, Sara La Manna, Marilisa Leone, Marian Vincenzi, Daniela Marasco
{"title":"Design and functional studies of xylene-based cyclic mimetics of SOCS1 protein","authors":"Alessia Cugudda, Sara La Manna, Marilisa Leone, Marian Vincenzi, Daniela Marasco","doi":"10.1016/j.ejmech.2024.117107","DOIUrl":null,"url":null,"abstract":"Peptidomimetics of Suppressors of cytokine signaling 1 (SOCS1) protein demonstrated valid therapeutic potentials as anti-inflammatory agents. Indeed, SOCS1 has a small kinase inhibitory region (KIR) primarily involved in the inhibition of the JAnus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway Herein, on the basis of previous investigations on a potent mimetic of KIR-SOCS1, named PS5, we designed and evaluated the SAR (Structure Activity Relationship) features of two xylene-based macrocycles analogues of PS5. These novel compounds bear thiol-xylene linkages with mono- and bi-cyclic scaffolds: they were <em>in vitro</em> functionally investigated toward JAK2 catalytic domain, as ligands with microscale thermophoresis (MST) and as inhibitors through LC-MS analyses. To evaluate structural properties Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopies were employed along with serum stability assays. Results indicated that a monocycle scaffold is well-tolerated by PS5 sequence enhancing the affinity toward the kinase with a K<sub>D</sub> in the low micromolar range and providing consistent inhibitory effects of the catalytic activity, which were evaluated for the first time in the case of SOCS1 mimetics. Conformationally, the presence of xylene scaffold affects the flexibility of the compounds and their stabilities to proteases degradation. This study contributes to the understanding of the factors necessary for accurately mimicking the inhibitory mechanism of SOCS1 protein towards JAK2 and to the translation of proteomimetics into drugs.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"18 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117107","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Peptidomimetics of Suppressors of cytokine signaling 1 (SOCS1) protein demonstrated valid therapeutic potentials as anti-inflammatory agents. Indeed, SOCS1 has a small kinase inhibitory region (KIR) primarily involved in the inhibition of the JAnus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway Herein, on the basis of previous investigations on a potent mimetic of KIR-SOCS1, named PS5, we designed and evaluated the SAR (Structure Activity Relationship) features of two xylene-based macrocycles analogues of PS5. These novel compounds bear thiol-xylene linkages with mono- and bi-cyclic scaffolds: they were in vitro functionally investigated toward JAK2 catalytic domain, as ligands with microscale thermophoresis (MST) and as inhibitors through LC-MS analyses. To evaluate structural properties Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopies were employed along with serum stability assays. Results indicated that a monocycle scaffold is well-tolerated by PS5 sequence enhancing the affinity toward the kinase with a KD in the low micromolar range and providing consistent inhibitory effects of the catalytic activity, which were evaluated for the first time in the case of SOCS1 mimetics. Conformationally, the presence of xylene scaffold affects the flexibility of the compounds and their stabilities to proteases degradation. This study contributes to the understanding of the factors necessary for accurately mimicking the inhibitory mechanism of SOCS1 protein towards JAK2 and to the translation of proteomimetics into drugs.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.