Junlan Li , Cheng Wang , Yucheng Yan , Peng Wang , Jieliang Zhao , Dawei Zhang
{"title":"Static and structural dynamic analysis of thick panel kirigami deployable structures","authors":"Junlan Li , Cheng Wang , Yucheng Yan , Peng Wang , Jieliang Zhao , Dawei Zhang","doi":"10.1016/j.ast.2024.109753","DOIUrl":null,"url":null,"abstract":"<div><div>Thick panel origami and kirigami concepts have been wildly used to design novel deployable structures in various engineering applications. However, these novel folding methods usually involve complex connected topologies, which may lead to unclear and intricate characterized relationships between system properties and structural parameters, e.g., the position of cutting creases, design parameters and hinge stiffness arrangement, etc. In this paper, we propose theoretical models to describe the static and dynamic properties of thick panel kirigami structure in the fully deployed configuration. Firstly, the connected topology of the origami and kirigami structure is analysed, and the internal coupling topology of the structure is obtained. Based on the compliant matrix method, the static model of the structure is presented, and the different crease cutting modes of origami and kirigami arrays are discussed. Then, the motion modes of slight oscillation of structure are discussed and the structural dynamic model is obtained based on the Lagrange equation and validated by simulation. On this basis, the sensitivity analysis of the parameters is carried out, and the optimization model is given based on the comprehensive performance evaluation function. A physical prototype is optimized and tested, which indicates that our model is valid. This paper provides models for the structural static and dynamic properties of thick panel kirigami structures with complex connected topology, and the findings have a potential to be developed in other thick panel structures with origami and kirigami folding concepts.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109753"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008824","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Thick panel origami and kirigami concepts have been wildly used to design novel deployable structures in various engineering applications. However, these novel folding methods usually involve complex connected topologies, which may lead to unclear and intricate characterized relationships between system properties and structural parameters, e.g., the position of cutting creases, design parameters and hinge stiffness arrangement, etc. In this paper, we propose theoretical models to describe the static and dynamic properties of thick panel kirigami structure in the fully deployed configuration. Firstly, the connected topology of the origami and kirigami structure is analysed, and the internal coupling topology of the structure is obtained. Based on the compliant matrix method, the static model of the structure is presented, and the different crease cutting modes of origami and kirigami arrays are discussed. Then, the motion modes of slight oscillation of structure are discussed and the structural dynamic model is obtained based on the Lagrange equation and validated by simulation. On this basis, the sensitivity analysis of the parameters is carried out, and the optimization model is given based on the comprehensive performance evaluation function. A physical prototype is optimized and tested, which indicates that our model is valid. This paper provides models for the structural static and dynamic properties of thick panel kirigami structures with complex connected topology, and the findings have a potential to be developed in other thick panel structures with origami and kirigami folding concepts.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.