GraphBNC: Machine Learning-Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins (Adv. Mater. 47/2024)

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-25 DOI:10.1002/adma.202470379
Antti Pihlajamäki, María Francisca Matus, Sami Malola, Hannu Häkkinen
{"title":"GraphBNC: Machine Learning-Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins (Adv. Mater. 47/2024)","authors":"Antti Pihlajamäki,&nbsp;María Francisca Matus,&nbsp;Sami Malola,&nbsp;Hannu Häkkinen","doi":"10.1002/adma.202470379","DOIUrl":null,"url":null,"abstract":"<p><b>Machine Learning for Nano-Bio Interfaces</b></p><p>In article number 2407046, Antti Pihlajamäki, María Francisca Matus, Sami Malola, and Hannu Häkkinen report a method based on graph theory and neural networks (GraphBNC) to predict atom-scale interactions between ligand-stabilized gold nanoclusters and proteins. The method uses dynamic data from molecular dynamics simulations, making GraphBNC particularly useful when empirical evidence is scarce.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 47","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202470379","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202470379","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning for Nano-Bio Interfaces

In article number 2407046, Antti Pihlajamäki, María Francisca Matus, Sami Malola, and Hannu Häkkinen report a method based on graph theory and neural networks (GraphBNC) to predict atom-scale interactions between ligand-stabilized gold nanoclusters and proteins. The method uses dynamic data from molecular dynamics simulations, making GraphBNC particularly useful when empirical evidence is scarce.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GraphBNC:机器学习辅助预测金属纳米团簇与血液蛋白质之间的相互作用(Adv. Mater.)
纳米生物界面的机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Machine-Learning-Enhanced Trial-and-Error for Efficient Optimization of Rubber Composites Synchronizing Multicolor Changes and Shape Deformation Into Structurally Homogeneous Hydrogels via a Single Photochromophore Achieving Zero Leakage, Ultralong Lifespan, and Intrinsic Opening Sensing in Microvalves Through Structural Superlubrication and Triboelectric Nanogenerator Technologies Recent Advances in Scalable, High-Mass Loaded Electrodes for Grid-Scale Energy Storage MAPbBr3 Quantum Dots Encapsulated Within Lanthanide-MOFs for Time-Resolved Multicolor Dynamic Anticounterfeiting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1