Dual-Layer-Per-Array Operation Using Local Polarization Switching of Ferroelectric Tunnel FETs for Massive Neural Networks

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-11-24 DOI:10.1002/aelm.202400606
Jae Seung Woo, Chae Lin Jung, Jin Ho Chang, Minjeong Ryu, Woo Young Choi
{"title":"Dual-Layer-Per-Array Operation Using Local Polarization Switching of Ferroelectric Tunnel FETs for Massive Neural Networks","authors":"Jae Seung Woo, Chae Lin Jung, Jin Ho Chang, Minjeong Ryu, Woo Young Choi","doi":"10.1002/aelm.202400606","DOIUrl":null,"url":null,"abstract":"A novel dual-layer-per-array (DLPA) operation is proposed and experimentally demonstrated by using ferroelectric tunnel field-effect transistors (FeTFETs) as synaptic transistors for high-density and low-power neuromorphic computing applications for the first time. Through local polarization switching (LPS), two distinct synaptic weight sets are stored and processed by utilizing the symmetrical and independent forward and ambipolar current regions within a single FeTFET. The stored weights of each region are multiplied by input gate voltages in the two-layer operation modes of TFETs: forward and ambipolar layer, enabling separate vector-matrix multiplication (VMM) operations within a single device array and doubling computational density. It is expected that the DLPA operation of FeTFETs will facilitate the implementation of large neural networks by reducing the footprint of conventional neuromorphic hardware by 50%.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"27 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400606","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel dual-layer-per-array (DLPA) operation is proposed and experimentally demonstrated by using ferroelectric tunnel field-effect transistors (FeTFETs) as synaptic transistors for high-density and low-power neuromorphic computing applications for the first time. Through local polarization switching (LPS), two distinct synaptic weight sets are stored and processed by utilizing the symmetrical and independent forward and ambipolar current regions within a single FeTFET. The stored weights of each region are multiplied by input gate voltages in the two-layer operation modes of TFETs: forward and ambipolar layer, enabling separate vector-matrix multiplication (VMM) operations within a single device array and doubling computational density. It is expected that the DLPA operation of FeTFETs will facilitate the implementation of large neural networks by reducing the footprint of conventional neuromorphic hardware by 50%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用铁电隧道场效应晶体管的局部极化切换实现双层逐阵列操作,从而构建大规模神经网络
通过使用铁电隧道场效应晶体管(FeTFET)作为突触晶体管,首次为高密度、低功耗神经形态计算应用提出并实验演示了一种新颖的双层阵列(DLPA)操作。通过局部极化开关 (LPS),利用单个 FeTFET 内对称和独立的正向和负极电流区域,可以存储和处理两个不同的突触权重集。每个区域存储的权重与 TFET 两层工作模式(正向层和负极层)中的输入栅极电压相乘,从而在单个器件阵列中实现独立的矢量矩阵乘法(VMM)运算,并将计算密度提高一倍。预计铁氧体场效应晶体管的 DLPA 操作将促进大型神经网络的实施,将传统神经形态硬件的占用空间减少 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Memristive Materials, Devices, and Systems (MEMRISYS 2023) Magnetic Field Screening of 2D Materials Revealed by Magnetic Force Microscopy A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo Evolution of Dissipative Regimes in Atomically Thin Bi2Sr2CaCu2O8 + x Superconductor Dual-Layer-Per-Array Operation Using Local Polarization Switching of Ferroelectric Tunnel FETs for Massive Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1