Man Shi , Hang Chen , Junbo Zhang, Zhenxiong Chen, Zhikang Wang, Tingting Cao, Quan Li, Xinzhang Song
{"title":"Microbial mechanisms underlying active organic carbon pool increases via rhizodeposition by Moso bamboo under in situ crown 13CO2 enrichment","authors":"Man Shi , Hang Chen , Junbo Zhang, Zhenxiong Chen, Zhikang Wang, Tingting Cao, Quan Li, Xinzhang Song","doi":"10.1016/j.apsoil.2024.105756","DOIUrl":null,"url":null,"abstract":"<div><div>Plant rhizodeposition strongly mediates plant-soil-microbe interactions and impacts the soil active organic carbon (C) pool. However, the mechanisms by which rhizodeposition affects the modulation of soil active organic C pool remain poorly understood. In this study, we investigated the effects of rhizodeposition on active organic C pool and microbial communities in Moso bamboo (<em>Phyllostachys edulis</em>), a clonal plant with rhizome-connected mother and offspring ramets. The crown of the mother ramet was enriched with <sup>13</sup>CO<sub>2</sub> to trace rhizodeposition and assess changes in soil organic C pool and the microbial community across different root systems (culm roots and rhizome roots) during key growth stages (early, peak, branching, and leafing). Our results showed that crown CO<sub>2</sub> enrichment increased δ<sup>13</sup>C and the contents of microbial biomass C, dissolved organic C, and labile organic C (by 22.08 % to 43.67 %) in the rhizosphere, which significantly altered the bacterial community composition. Under crown CO<sub>2</sub> enrichment, the abundance of bacterial taxa and genes associated with recalcitrant C decomposition decreased by 29.08 %–77.38 % and 30.75 %–56.85 %, respectively; while taxa and genes related to CO<sub>2</sub> fixation increased by 51.22 %–267.00 % and 92.52 %–331.46 %, respectively. These microbial shifts contributed to an increase in the soil active organic C pool. In addition, the growth stage, rather than the root system, had a greater influence on rhizodeposition, with higher δ<sup>13</sup>C observed during the early and leafing stages compared to the peak and branching stages. In conclusion, our findings suggest that increases in the active organic C pool were primarily driven by enhanced C rhizodeposition, the stimulation of microbes involved in CO<sub>2</sub> fixation, and the suppression of bacteria involved in recalcitrant C decomposition, while being highly dependent on the growth stage. This study provides valuable insights into the interactions between plant rhizodeposition, microbial functions, and soil active organic C dynamics.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"204 ","pages":"Article 105756"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324004876","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Plant rhizodeposition strongly mediates plant-soil-microbe interactions and impacts the soil active organic carbon (C) pool. However, the mechanisms by which rhizodeposition affects the modulation of soil active organic C pool remain poorly understood. In this study, we investigated the effects of rhizodeposition on active organic C pool and microbial communities in Moso bamboo (Phyllostachys edulis), a clonal plant with rhizome-connected mother and offspring ramets. The crown of the mother ramet was enriched with 13CO2 to trace rhizodeposition and assess changes in soil organic C pool and the microbial community across different root systems (culm roots and rhizome roots) during key growth stages (early, peak, branching, and leafing). Our results showed that crown CO2 enrichment increased δ13C and the contents of microbial biomass C, dissolved organic C, and labile organic C (by 22.08 % to 43.67 %) in the rhizosphere, which significantly altered the bacterial community composition. Under crown CO2 enrichment, the abundance of bacterial taxa and genes associated with recalcitrant C decomposition decreased by 29.08 %–77.38 % and 30.75 %–56.85 %, respectively; while taxa and genes related to CO2 fixation increased by 51.22 %–267.00 % and 92.52 %–331.46 %, respectively. These microbial shifts contributed to an increase in the soil active organic C pool. In addition, the growth stage, rather than the root system, had a greater influence on rhizodeposition, with higher δ13C observed during the early and leafing stages compared to the peak and branching stages. In conclusion, our findings suggest that increases in the active organic C pool were primarily driven by enhanced C rhizodeposition, the stimulation of microbes involved in CO2 fixation, and the suppression of bacteria involved in recalcitrant C decomposition, while being highly dependent on the growth stage. This study provides valuable insights into the interactions between plant rhizodeposition, microbial functions, and soil active organic C dynamics.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.