Oxygen updraft gasification of euro cotton banknotes waste for hydrogen-rich syngas production

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-11-16 DOI:10.1016/j.joei.2024.101906
Samy Yousef , Justas Eimontas , Kęstutis Zakarauskas , Nerijus Striūgas
{"title":"Oxygen updraft gasification of euro cotton banknotes waste for hydrogen-rich syngas production","authors":"Samy Yousef ,&nbsp;Justas Eimontas ,&nbsp;Kęstutis Zakarauskas ,&nbsp;Nerijus Striūgas","doi":"10.1016/j.joei.2024.101906","DOIUrl":null,"url":null,"abstract":"<div><div>Euro cotton banknote waste (BW) is one of the challenges that the EU region has recently sought vigorously to integrate into the circular economy and to encourage research and investment in its valorisation in order to preserve this sector and reduce its environmental risks. Within this framework, this research aims to study the possibility of treating BW using gasification process and converting it into hydrogen (H<sub>2</sub>)-rich syngas. Gasification experiments were performed on euro banknote-based cotton waste that underwent pre-pelletizing treatment to produce uniform BW granules. The conversion process was carried out using a continuous updraft gasifier system with a capacity up to 1 kg/h in oxygen agent. To optimize the process and obtain ideal conditions that can release the maximum amount of H<sub>2</sub> into the synthesized gas, the experiments were conducted at different temperatures (700, 800, 900 °C) and air-fuel equivalence ratios (ER: 0.19, 0.24, 0.29). The syngas, tar, and soot gasification products were characterized using Gas chromatography, Scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR). The results show that at 700 °C (ER = 0.24), the maximum syngas production rate (1.16 kg/h) with HHV 9.1 MJ/kg can be obtained together with production of 0.05 kg/h (tar) and 0.79 kg/h (soot). Meanwhile, the highest H<sub>2</sub> content (up to 19 %) was obtained at 900 °C (ER = 0.19) with less tar (0.01 kg/h) and soot (0.49 kg/h). Accordingly, BW treatment using the gasification process is a promising technology for its disposal, especially at a high temperature (900 °C) to convert it into H<sub>2</sub>-rich syngas with smaller quantity of tar and soot components.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"118 ","pages":"Article 101906"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003842","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Euro cotton banknote waste (BW) is one of the challenges that the EU region has recently sought vigorously to integrate into the circular economy and to encourage research and investment in its valorisation in order to preserve this sector and reduce its environmental risks. Within this framework, this research aims to study the possibility of treating BW using gasification process and converting it into hydrogen (H2)-rich syngas. Gasification experiments were performed on euro banknote-based cotton waste that underwent pre-pelletizing treatment to produce uniform BW granules. The conversion process was carried out using a continuous updraft gasifier system with a capacity up to 1 kg/h in oxygen agent. To optimize the process and obtain ideal conditions that can release the maximum amount of H2 into the synthesized gas, the experiments were conducted at different temperatures (700, 800, 900 °C) and air-fuel equivalence ratios (ER: 0.19, 0.24, 0.29). The syngas, tar, and soot gasification products were characterized using Gas chromatography, Scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR). The results show that at 700 °C (ER = 0.24), the maximum syngas production rate (1.16 kg/h) with HHV 9.1 MJ/kg can be obtained together with production of 0.05 kg/h (tar) and 0.79 kg/h (soot). Meanwhile, the highest H2 content (up to 19 %) was obtained at 900 °C (ER = 0.19) with less tar (0.01 kg/h) and soot (0.49 kg/h). Accordingly, BW treatment using the gasification process is a promising technology for its disposal, especially at a high temperature (900 °C) to convert it into H2-rich syngas with smaller quantity of tar and soot components.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Oxygen updraft gasification of euro cotton banknotes waste for hydrogen-rich syngas production Editorial Board Synergistic recovery of renewable hydrocarbon resources via co-pyrolysis of non-edible linseed and waste polypropylene: A study on influence of plastic on oil production and their utilization as a fuel for IC engine Comprehensive performance investigation of inexpensive oxygen carrier in chemical looping gasification of coal Cerium-induced modification of acid-base sites in Ni-zeolite catalysts for improved dry reforming of methane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1