Shuli Liu , Junrui Han , Yongliang Shen , Sheher Yar Khan , Wenjie Ji , Haibo Jin , Mahesh Kumar
{"title":"The contribution of artificial intelligence to phase change materials in thermal energy storage: From prediction to optimization","authors":"Shuli Liu , Junrui Han , Yongliang Shen , Sheher Yar Khan , Wenjie Ji , Haibo Jin , Mahesh Kumar","doi":"10.1016/j.renene.2024.121973","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial Intelligence (AI) is leading the charge in revolutionizing research methodologies within the field of latent heat storage (LHS) by using phase change materials (PCMs) and elevating their overall efficiency. This comprehensive review delves into AI applications within the domain of PCM for TES systems, mainly including prediction and optimization. The review article emphasizes the crucial role of AI in predicting physical properties of composite PCM and its performance in LHS systems. Also, the review article highlights the significance of AI in optimizing the structure and layout, as well as the operation and control strategies of latent heat storage systems using PCMs across various research fields. The study at hand discusses literature encompassing both experimental and theoretical articles that detail the integration of AI techniques within TES systems by using PCM, and compares the advantages and limitations of AI prediction models and optimization algorithms with existing typical technologies in the field of LHS. The summarization of the limitations in prior research has been presented, along with the proposal of potential avenues for performance enhancement of AI applied in LHS system. Additionally, the primary directions and challenges for future investigations have been emphasized, accompanied by suggested strategies.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"238 ","pages":"Article 121973"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096014812402041X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial Intelligence (AI) is leading the charge in revolutionizing research methodologies within the field of latent heat storage (LHS) by using phase change materials (PCMs) and elevating their overall efficiency. This comprehensive review delves into AI applications within the domain of PCM for TES systems, mainly including prediction and optimization. The review article emphasizes the crucial role of AI in predicting physical properties of composite PCM and its performance in LHS systems. Also, the review article highlights the significance of AI in optimizing the structure and layout, as well as the operation and control strategies of latent heat storage systems using PCMs across various research fields. The study at hand discusses literature encompassing both experimental and theoretical articles that detail the integration of AI techniques within TES systems by using PCM, and compares the advantages and limitations of AI prediction models and optimization algorithms with existing typical technologies in the field of LHS. The summarization of the limitations in prior research has been presented, along with the proposal of potential avenues for performance enhancement of AI applied in LHS system. Additionally, the primary directions and challenges for future investigations have been emphasized, accompanied by suggested strategies.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.