Producing green rutile from secondary ilmenite via hydrogen reduction

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL Minerals Engineering Pub Date : 2024-11-26 DOI:10.1016/j.mineng.2024.109113
William Spencer, Don Ibana, Pritam Singh, Aleksandar N. Nikoloski
{"title":"Producing green rutile from secondary ilmenite via hydrogen reduction","authors":"William Spencer,&nbsp;Don Ibana,&nbsp;Pritam Singh,&nbsp;Aleksandar N. Nikoloski","doi":"10.1016/j.mineng.2024.109113","DOIUrl":null,"url":null,"abstract":"<div><div>The use of coal for ilmenite reduction to produce synthetic rutile is widespread in industry. However, the carbon dioxide emissions associated with coal combustion pose significant environmental concerns. Alternative reductants such as hydrogen have the potential to promote environmentally friendly production of green rutile. This study aimed to assess the technical feasibility of reducing an Australian secondary (weathered) ilmenite using hydrogen, focusing on the effects of reduction temperature and time. The ilmenite was composed of 65 % titanium dioxide, 29 % iron oxide, and 6 % impurities. Samples at each stage of the processing were analysed using X-ray fluorescence spectrometry (XRF) and scanning electron microscopy (SEM). The results revealed that both temperature and time impacted ilmenite reduction, with increasing values of both parameters leading to higher reduction percentages. The maximum reduction percentages were obtained for a reduction time of 240 min at all temperatures, and there was an increase from 62 % at 973 K to 99 % at 1273 K for this reduction time. A reduction percentage of 90 % was obtained at 1273 K with a holding time of 60 min. This study indicates that a minimum temperature of 1073 K is required to achieve a reduction exceeding 90 % for secondary ilmenite. The SEM analysis showed that fine, discrete, metallised iron particles were present on the surface of the reduced secondary ilmenite. The investigation into hydrogen as an alternative reductant demonstrated improved iron–titanium separation in acid leaching compared with the conventional reduction method using coal and resulted in green rutile products with titanium dioxide grades exceeding 96 %, and iron oxide content below 1 %.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"221 ","pages":"Article 109113"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524005429","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of coal for ilmenite reduction to produce synthetic rutile is widespread in industry. However, the carbon dioxide emissions associated with coal combustion pose significant environmental concerns. Alternative reductants such as hydrogen have the potential to promote environmentally friendly production of green rutile. This study aimed to assess the technical feasibility of reducing an Australian secondary (weathered) ilmenite using hydrogen, focusing on the effects of reduction temperature and time. The ilmenite was composed of 65 % titanium dioxide, 29 % iron oxide, and 6 % impurities. Samples at each stage of the processing were analysed using X-ray fluorescence spectrometry (XRF) and scanning electron microscopy (SEM). The results revealed that both temperature and time impacted ilmenite reduction, with increasing values of both parameters leading to higher reduction percentages. The maximum reduction percentages were obtained for a reduction time of 240 min at all temperatures, and there was an increase from 62 % at 973 K to 99 % at 1273 K for this reduction time. A reduction percentage of 90 % was obtained at 1273 K with a holding time of 60 min. This study indicates that a minimum temperature of 1073 K is required to achieve a reduction exceeding 90 % for secondary ilmenite. The SEM analysis showed that fine, discrete, metallised iron particles were present on the surface of the reduced secondary ilmenite. The investigation into hydrogen as an alternative reductant demonstrated improved iron–titanium separation in acid leaching compared with the conventional reduction method using coal and resulted in green rutile products with titanium dioxide grades exceeding 96 %, and iron oxide content below 1 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过氢还原法从二级钛铁矿中生产绿色金红石
工业上普遍使用煤来还原钛铁矿以生产合成金红石。然而,与煤炭燃烧相关的二氧化碳排放会带来严重的环境问题。氢气等替代还原剂有可能促进环保型绿色金红石的生产。本研究旨在评估使用氢气还原澳大利亚二级(风化)钛铁矿的技术可行性,重点关注还原温度和时间的影响。钛铁矿由 65% 的二氧化钛、29% 的氧化铁和 6% 的杂质组成。使用 X 射线荧光光谱仪(XRF)和扫描电子显微镜(SEM)分析了每个加工阶段的样品。结果表明,温度和时间都会影响钛铁矿的还原,这两个参数值越大,还原率越高。在所有温度下,当还原时间为 240 分钟时,还原率最高,从 973 K 时的 62% 增加到 1273 K 时的 99%。在保持 60 分钟的情况下,1273 K 的还原率为 90%。这项研究表明,要使二次钛铁矿的还原率超过 90%,最低温度为 1073 K。扫描电镜分析表明,还原后的二次钛铁矿表面存在细小、离散的金属化铁颗粒。对氢气作为替代还原剂的研究表明,与使用煤炭的传统还原方法相比,在酸浸出过程中铁钛分离效果更好,生产出的绿色金红石产品二氧化钛品位超过 96%,氧化铁含量低于 1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
期刊最新文献
Editorial Board The effect of hydrogen pre-reduction on the carbon-reducibility of pelletised UG2 chromite Mechanism of quartz flotation separation from gypsum using tetradecyl trimethyl ammonium chloride: Guiding the improvement of phosphogypsum quality Mitigating contaminated mine drainage through mine waste rock decontamination: A strategy for promoting cleaner and sustainable management Fourth generation gravity separation using the Reflux Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1