A transformer based visual tracker with restricted token interaction and knowledge distillation

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-20 DOI:10.1016/j.knosys.2024.112736
Nian Liu, Yi Zhang
{"title":"A transformer based visual tracker with restricted token interaction and knowledge distillation","authors":"Nian Liu,&nbsp;Yi Zhang","doi":"10.1016/j.knosys.2024.112736","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, one-stream pipelines have made significant progress in visual object tracking (VOT), where the template and search images interact in early stages. However, one-stream pipelines have a potential problem: They treat the object and the background equally (or other irrelevant parts), leading to weak discriminability of the extracted features. To remedy this issue, a restricted token interaction module based on asymmetric attention mechanism is proposed in this paper, which divides the search image into valuable part and other part. Only the valuable part is selected for cross-attention with the template so as to better distinguish the object from the background, which finally improves the localization accuracy and robustness. In addition, to avoid heavy computational overhead, we utilize logit distillation and localization distillation methods to optimize the outputs of the classification and regression heads respectively. At the same time, we separate the distillation regions and apply different knowledge distillation methods in different regions to effectively determine which regions are most beneficial for classification or localization learning. Extensive experiments have been conducted on mainstream datasets in which our tracker (dubbed RIDTrack) has achieved appealing results while meeting the real-time requirement.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"307 ","pages":"Article 112736"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013704","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, one-stream pipelines have made significant progress in visual object tracking (VOT), where the template and search images interact in early stages. However, one-stream pipelines have a potential problem: They treat the object and the background equally (or other irrelevant parts), leading to weak discriminability of the extracted features. To remedy this issue, a restricted token interaction module based on asymmetric attention mechanism is proposed in this paper, which divides the search image into valuable part and other part. Only the valuable part is selected for cross-attention with the template so as to better distinguish the object from the background, which finally improves the localization accuracy and robustness. In addition, to avoid heavy computational overhead, we utilize logit distillation and localization distillation methods to optimize the outputs of the classification and regression heads respectively. At the same time, we separate the distillation regions and apply different knowledge distillation methods in different regions to effectively determine which regions are most beneficial for classification or localization learning. Extensive experiments have been conducted on mainstream datasets in which our tracker (dubbed RIDTrack) has achieved appealing results while meeting the real-time requirement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Automated message selection for robust Heterogeneous Graph Contrastive Learning Lightweight video object segmentation: Integrating online knowledge distillation for fast segmentation UrduHope: Analysis of hope and hopelessness in Urdu texts Online learning discriminative sparse convolution networks for robust UAV object tracking A transformer based visual tracker with restricted token interaction and knowledge distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1