AI capability and green innovation impact on sustainable performance: Moderating role of big data and knowledge management

IF 12.9 1区 管理学 Q1 BUSINESS Technological Forecasting and Social Change Pub Date : 2024-11-23 DOI:10.1016/j.techfore.2024.123897
Hussam Al Halbusi , Khalid Ibrahim Al-Sulaiti , Ali Abdallah Alalwan , Adil S. Al-Busaidi
{"title":"AI capability and green innovation impact on sustainable performance: Moderating role of big data and knowledge management","authors":"Hussam Al Halbusi ,&nbsp;Khalid Ibrahim Al-Sulaiti ,&nbsp;Ali Abdallah Alalwan ,&nbsp;Adil S. Al-Busaidi","doi":"10.1016/j.techfore.2024.123897","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the environmental impact of industries by focusing on increased resource consumption and waste generation that lead to ecosystem degradation. It advocates sustainable practices and a circular economy (CE) as strategies to mitigate these effects. Thus, the study examines how Artificial Intelligence (AI) capabilities directly affect green innovations and their subsequent influence on sustainable performance and CE. In addition, it introduces two key moderating factors—big data analytics and knowledge management systems—in the relationship between AI capabilities and green innovation. We validate the model using multi-sectoral population data from various Qatari industries and employ structural equation modeling (SEM) and artificial neural networks (ANN) as analytical approaches. The results indicate the significant impact of AI capability on green innovation, with these innovations critically linked to sustainable performance and CE. Remarkably, interactions with big data analytics and knowledge management systems enhance the positive impact of AI capabilities. Hence, this study emphasizes AI's noteworthy implications for green innovation, shaping sustainable performance, and CE. Identifying big data analytics and knowledge management systems as vital moderators adds complexity. The findings guide industries to integrate AI, big data analytics, and knowledge management systems for practical applications, stressing a holistic approach to promoting environmentally responsible practices across sectors.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"210 ","pages":"Article 123897"},"PeriodicalIF":12.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162524006954","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the environmental impact of industries by focusing on increased resource consumption and waste generation that lead to ecosystem degradation. It advocates sustainable practices and a circular economy (CE) as strategies to mitigate these effects. Thus, the study examines how Artificial Intelligence (AI) capabilities directly affect green innovations and their subsequent influence on sustainable performance and CE. In addition, it introduces two key moderating factors—big data analytics and knowledge management systems—in the relationship between AI capabilities and green innovation. We validate the model using multi-sectoral population data from various Qatari industries and employ structural equation modeling (SEM) and artificial neural networks (ANN) as analytical approaches. The results indicate the significant impact of AI capability on green innovation, with these innovations critically linked to sustainable performance and CE. Remarkably, interactions with big data analytics and knowledge management systems enhance the positive impact of AI capabilities. Hence, this study emphasizes AI's noteworthy implications for green innovation, shaping sustainable performance, and CE. Identifying big data analytics and knowledge management systems as vital moderators adds complexity. The findings guide industries to integrate AI, big data analytics, and knowledge management systems for practical applications, stressing a holistic approach to promoting environmentally responsible practices across sectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能能力和绿色创新对可持续绩效的影响:大数据和知识管理的调节作用
本研究探讨了工业对环境的影响,重点是导致生态系统退化的资源消耗增加和废物产生。它提倡将可持续实践和循环经济(CE)作为减轻这些影响的战略。因此,本研究探讨了人工智能(AI)能力如何直接影响绿色创新及其对可持续绩效和循环经济的后续影响。此外,研究还引入了人工智能能力与绿色创新关系中的两个关键调节因素--大数据分析和知识管理系统。我们利用卡塔尔各行业的多部门人口数据验证了该模型,并采用结构方程建模(SEM)和人工神经网络(ANN)作为分析方法。结果表明,人工智能能力对绿色创新产生了重大影响,这些创新与可持续绩效和消费总值密切相关。值得注意的是,与大数据分析和知识管理系统的互动增强了人工智能能力的积极影响。因此,本研究强调了人工智能对绿色创新、塑造可持续绩效和首席执行官的显著影响。将大数据分析和知识管理系统确定为重要的调节因素增加了研究的复杂性。研究结果指导各行业在实际应用中整合人工智能、大数据分析和知识管理系统,强调以整体方法促进各行业的环境责任实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.30
自引率
10.80%
发文量
813
期刊介绍: Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors. In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.
期刊最新文献
Building operational resilience through digitalization: The roles of supply chain network position Survival determinants of Fintech firms in Malaysia-moderating role of Fintech experience Mapping Saudi Arabia's low emissions transition path by 2060: An input-output analysis Unmasking inequalities of the code: Disentangling the nexus of AI and inequality Spinning stories: Wind turbines and local narrative landscapes in Germany
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1