Carrier concentration dependence of optical and magnetic properties in epitaxial manganese-doped indium tin oxide films with different manganese concentrations
{"title":"Carrier concentration dependence of optical and magnetic properties in epitaxial manganese-doped indium tin oxide films with different manganese concentrations","authors":"Saiki Kitagawa , Toshihiro Nakamura","doi":"10.1016/j.cap.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>Epitaxial manganese-doped indium tin oxide (Mn-doped ITO) films with different Mn concentrations were deposited on single-crystal yttria-stabilized zirconia substrates using radio-frequency magnetron sputtering. The carrier concentration of the epitaxial Mn-doped ITO films could be controlled by changing the Mn doping concentration. The optical bandgaps of the films increased with the increase in the carrier concentration. Room-temperature ferromagnetism was observed in all films irrespective of the Mn concentration. The saturation magnetizations of the films increased with the increase in the carrier concentration, which suggests that delocalized charge carrier-mediated interaction model is one of the most probable mechanisms of the ferromagnetism in the Mn-doped ITO films. We found that the carrier concentration plays a crucial role in controlling optical and magnetic properties of the Mn-doped ITO films. The results of this study provide useful insight into the application of Mn-doped ITO films to ferromagnetic electrodes in spintronic devices.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 60-69"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002463","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Epitaxial manganese-doped indium tin oxide (Mn-doped ITO) films with different Mn concentrations were deposited on single-crystal yttria-stabilized zirconia substrates using radio-frequency magnetron sputtering. The carrier concentration of the epitaxial Mn-doped ITO films could be controlled by changing the Mn doping concentration. The optical bandgaps of the films increased with the increase in the carrier concentration. Room-temperature ferromagnetism was observed in all films irrespective of the Mn concentration. The saturation magnetizations of the films increased with the increase in the carrier concentration, which suggests that delocalized charge carrier-mediated interaction model is one of the most probable mechanisms of the ferromagnetism in the Mn-doped ITO films. We found that the carrier concentration plays a crucial role in controlling optical and magnetic properties of the Mn-doped ITO films. The results of this study provide useful insight into the application of Mn-doped ITO films to ferromagnetic electrodes in spintronic devices.
利用射频磁控溅射技术在单晶钇稳定氧化锆基底上沉积了不同锰浓度的掺锰氧化铟锡(掺锰氧化铟锡)外延薄膜。外延掺锰 ITO 薄膜的载流子浓度可通过改变掺锰浓度来控制。薄膜的光带隙随着载流子浓度的增加而增大。无论锰的浓度如何,所有薄膜都具有室温铁磁性。薄膜的饱和磁化率随着载流子浓度的增加而增加,这表明电荷载流子介导的非局域相互作用模型是掺锰 ITO 薄膜铁磁性的最可能机制之一。我们发现,载流子浓度在控制掺锰 ITO 薄膜的光学和磁学特性方面起着至关重要的作用。这项研究的结果为将掺锰 ITO 薄膜应用于自旋电子器件中的铁磁电极提供了有益的启示。
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.