Carrier concentration dependence of optical and magnetic properties in epitaxial manganese-doped indium tin oxide films with different manganese concentrations

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Applied Physics Pub Date : 2024-11-15 DOI:10.1016/j.cap.2024.11.008
Saiki Kitagawa , Toshihiro Nakamura
{"title":"Carrier concentration dependence of optical and magnetic properties in epitaxial manganese-doped indium tin oxide films with different manganese concentrations","authors":"Saiki Kitagawa ,&nbsp;Toshihiro Nakamura","doi":"10.1016/j.cap.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>Epitaxial manganese-doped indium tin oxide (Mn-doped ITO) films with different Mn concentrations were deposited on single-crystal yttria-stabilized zirconia substrates using radio-frequency magnetron sputtering. The carrier concentration of the epitaxial Mn-doped ITO films could be controlled by changing the Mn doping concentration. The optical bandgaps of the films increased with the increase in the carrier concentration. Room-temperature ferromagnetism was observed in all films irrespective of the Mn concentration. The saturation magnetizations of the films increased with the increase in the carrier concentration, which suggests that delocalized charge carrier-mediated interaction model is one of the most probable mechanisms of the ferromagnetism in the Mn-doped ITO films. We found that the carrier concentration plays a crucial role in controlling optical and magnetic properties of the Mn-doped ITO films. The results of this study provide useful insight into the application of Mn-doped ITO films to ferromagnetic electrodes in spintronic devices.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 60-69"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002463","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Epitaxial manganese-doped indium tin oxide (Mn-doped ITO) films with different Mn concentrations were deposited on single-crystal yttria-stabilized zirconia substrates using radio-frequency magnetron sputtering. The carrier concentration of the epitaxial Mn-doped ITO films could be controlled by changing the Mn doping concentration. The optical bandgaps of the films increased with the increase in the carrier concentration. Room-temperature ferromagnetism was observed in all films irrespective of the Mn concentration. The saturation magnetizations of the films increased with the increase in the carrier concentration, which suggests that delocalized charge carrier-mediated interaction model is one of the most probable mechanisms of the ferromagnetism in the Mn-doped ITO films. We found that the carrier concentration plays a crucial role in controlling optical and magnetic properties of the Mn-doped ITO films. The results of this study provide useful insight into the application of Mn-doped ITO films to ferromagnetic electrodes in spintronic devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同锰浓度的掺杂铟锡氧化物外延薄膜的光学和磁学特性与载流子浓度的关系
利用射频磁控溅射技术在单晶钇稳定氧化锆基底上沉积了不同锰浓度的掺锰氧化铟锡(掺锰氧化铟锡)外延薄膜。外延掺锰 ITO 薄膜的载流子浓度可通过改变掺锰浓度来控制。薄膜的光带隙随着载流子浓度的增加而增大。无论锰的浓度如何,所有薄膜都具有室温铁磁性。薄膜的饱和磁化率随着载流子浓度的增加而增加,这表明电荷载流子介导的非局域相互作用模型是掺锰 ITO 薄膜铁磁性的最可能机制之一。我们发现,载流子浓度在控制掺锰 ITO 薄膜的光学和磁学特性方面起着至关重要的作用。这项研究的结果为将掺锰 ITO 薄膜应用于自旋电子器件中的铁磁电极提供了有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
期刊最新文献
Editorial Board Synergistic impact of Al2O3 capping layer and deposition temperature for enhancing the ferroelectricity of undoped-HfO2 thin films Improved mobility in InAs nanowire FETs with sulfur-based surface treatment Graphene/WS2/LaVO3 heterojunction for self-powered, high-speed, and broadband photodetectors Oxidation effects on the optical and electrical properties of MoS2 under controlled baking temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1