Tingyi Yue , Chengjiang Li , Yu-jie Hu , Honglei Wang
{"title":"Dispatch optimization study of hybrid pumped storage-wind-photovoltaic system considering seasonal factors","authors":"Tingyi Yue , Chengjiang Li , Yu-jie Hu , Honglei Wang","doi":"10.1016/j.renene.2024.121969","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth and variability of wind and photovoltaic power generation have increased the reliance on hydroelectricity for regulation. A hybrid pumped storage hydropower-wind-photovoltaic system can help manage these fluctuations, but seasonal water flow changes at hydropower plants pose challenges. This study proposes a model for scheduling the hybrid system across seasons, optimizing capacity, water pumping, and power generation to reduce costs. The Wujiang River Hydropower Station in Guizhou, China, serves as the case study. The Results shows that: (1) 35 % increase in water storage at the second-stage hydropower station during the high-water period enables an additional 300 million kWh of power generation. (2)Water resource interaction between high-water and low-water periods reduces the likelihood of power supply loss by 10 %, while adding pumping stations cuts costs by <span><math><mrow><mn>9.3</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></math></span> CNY. (3) A 10 % increase in feed-in tariffs raises costs by 9 %, and energy storage reduces waste by 155.6 MW during High-water periods. During peak hours (11:00–13:00, 6:00–10:00), both dry and abundant water storage devices must operate at full capacity, with surplus energy sold to the grid at other times.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"238 ","pages":"Article 121969"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124020378","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth and variability of wind and photovoltaic power generation have increased the reliance on hydroelectricity for regulation. A hybrid pumped storage hydropower-wind-photovoltaic system can help manage these fluctuations, but seasonal water flow changes at hydropower plants pose challenges. This study proposes a model for scheduling the hybrid system across seasons, optimizing capacity, water pumping, and power generation to reduce costs. The Wujiang River Hydropower Station in Guizhou, China, serves as the case study. The Results shows that: (1) 35 % increase in water storage at the second-stage hydropower station during the high-water period enables an additional 300 million kWh of power generation. (2)Water resource interaction between high-water and low-water periods reduces the likelihood of power supply loss by 10 %, while adding pumping stations cuts costs by CNY. (3) A 10 % increase in feed-in tariffs raises costs by 9 %, and energy storage reduces waste by 155.6 MW during High-water periods. During peak hours (11:00–13:00, 6:00–10:00), both dry and abundant water storage devices must operate at full capacity, with surplus energy sold to the grid at other times.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.