Quantitative assessment approach of fuel cell operating state of safety based on potential field method

IF 9 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2024-11-19 DOI:10.1016/j.renene.2024.121782
Weitao Zou , Jianwei Li
{"title":"Quantitative assessment approach of fuel cell operating state of safety based on potential field method","authors":"Weitao Zou ,&nbsp;Jianwei Li","doi":"10.1016/j.renene.2024.121782","DOIUrl":null,"url":null,"abstract":"<div><div>The fuel cell holds significant promise for vehicle applications due to its low carbon footprint and high efficiency. Accurate assessment of the state of safety (SOS) of fuel cells is crucial for ensuring vehicle safety, given the electrochemical characteristics, structure, and material properties involved. However, evaluating the safety performance of fuel cells is challenging, as it encompasses various factors such as mechanical, electrical, thermal, and chemical aspects, making quantitative SOS assessment difficult. Existing literature provides qualitative descriptions but lacks numerical quantification of the operational safety performance of fuel cell systems. To address this gap, this paper introduces, for the first time, a potential field method to quantitatively evaluate the operational safety of fuel cells. The model establishes a fuel cell behavior potential field by defining feasible regions for control or state variables, representing the mapping relationship between fuel cell behavior and the state of safety. Additionally, the proposed potential field model’s real-time performance is validated in a test case, demonstrating its feasibility and applicability for quantitatively assessing the fuel cell state of safety.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"238 ","pages":"Article 121782"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124018500","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The fuel cell holds significant promise for vehicle applications due to its low carbon footprint and high efficiency. Accurate assessment of the state of safety (SOS) of fuel cells is crucial for ensuring vehicle safety, given the electrochemical characteristics, structure, and material properties involved. However, evaluating the safety performance of fuel cells is challenging, as it encompasses various factors such as mechanical, electrical, thermal, and chemical aspects, making quantitative SOS assessment difficult. Existing literature provides qualitative descriptions but lacks numerical quantification of the operational safety performance of fuel cell systems. To address this gap, this paper introduces, for the first time, a potential field method to quantitatively evaluate the operational safety of fuel cells. The model establishes a fuel cell behavior potential field by defining feasible regions for control or state variables, representing the mapping relationship between fuel cell behavior and the state of safety. Additionally, the proposed potential field model’s real-time performance is validated in a test case, demonstrating its feasibility and applicability for quantitatively assessing the fuel cell state of safety.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电位场法的燃料电池运行安全状态定量评估方法
燃料电池因其低碳足迹和高效率而在汽车应用中大有可为。鉴于燃料电池的电化学特性、结构和材料属性,准确评估燃料电池的安全状态(SOS)对于确保车辆安全至关重要。然而,评估燃料电池的安全性能具有挑战性,因为它包含机械、电气、热和化学等多方面的因素,因此很难对 SOS 进行定量评估。现有文献提供了定性描述,但缺乏对燃料电池系统运行安全性能的数值量化。为弥补这一不足,本文首次提出了一种定量评估燃料电池运行安全的潜在现场方法。该模型通过定义控制或状态变量的可行区域来建立燃料电池行为势场,代表燃料电池行为与安全状态之间的映射关系。此外,还在一个测试案例中验证了所提出的势场模型的实时性能,证明了该模型在定量评估燃料电池安全状态方面的可行性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Editorial Board Editorial Board Editorial Board Techno-economic optimization of microgrid operation with integration of renewable energy, hydrogen storage, and micro gas turbine Decomposition analysis of renewable energy demand and coupling effect between renewable energy and energy demand: Evidence from China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1