Water wave interactions with surface-piercing vertical barriers in a rectangular tank: Connections with Bloch waves and quasimodes

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS Wave Motion Pub Date : 2024-11-16 DOI:10.1016/j.wavemoti.2024.103444
Ben Wilks , Fabien Montiel , Luke G. Bennetts , Sarah Wakes
{"title":"Water wave interactions with surface-piercing vertical barriers in a rectangular tank: Connections with Bloch waves and quasimodes","authors":"Ben Wilks ,&nbsp;Fabien Montiel ,&nbsp;Luke G. Bennetts ,&nbsp;Sarah Wakes","doi":"10.1016/j.wavemoti.2024.103444","DOIUrl":null,"url":null,"abstract":"<div><div>Eigenmodes are studied for a fluid-filled rectangular tank containing one or more vertical barriers, and on which either Dirichlet or Neumann boundary conditions are prescribed on the lateral walls. In the case where the tank contains a single barrier, the geometry of the tank is equivalent to the unit cell of the cognate periodic array, and its eigenmodes are equivalent to standing Bloch waves. As the submergence depth of the barrier increases, it is shown that the passbands (i.e. frequency intervals in which the periodic array supports Bloch waves) become thinner, and that this effect becomes stronger at higher frequencies. The eigenmodes of a uniform array of vertical barriers in a rectangular tank are also considered. They are found to be a superposition of left- and right-propagating Bloch waves, which couple together at the lateral walls of the tank. A homotopy procedure is used to relate the eigenmodes to the quasimodes of the same uniform array in a fluid of infinite horizontal extent, and the quasimodes are shown to govern the response of the array to incident waves. Qualitative features of the mode shapes are typically preserved by the homotopy, which suggests that the resonant responses of the array in an infinite fluid can be understood in terms of modes of the array in a finite tank.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"132 ","pages":"Article 103444"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001744","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Eigenmodes are studied for a fluid-filled rectangular tank containing one or more vertical barriers, and on which either Dirichlet or Neumann boundary conditions are prescribed on the lateral walls. In the case where the tank contains a single barrier, the geometry of the tank is equivalent to the unit cell of the cognate periodic array, and its eigenmodes are equivalent to standing Bloch waves. As the submergence depth of the barrier increases, it is shown that the passbands (i.e. frequency intervals in which the periodic array supports Bloch waves) become thinner, and that this effect becomes stronger at higher frequencies. The eigenmodes of a uniform array of vertical barriers in a rectangular tank are also considered. They are found to be a superposition of left- and right-propagating Bloch waves, which couple together at the lateral walls of the tank. A homotopy procedure is used to relate the eigenmodes to the quasimodes of the same uniform array in a fluid of infinite horizontal extent, and the quasimodes are shown to govern the response of the array to incident waves. Qualitative features of the mode shapes are typically preserved by the homotopy, which suggests that the resonant responses of the array in an infinite fluid can be understood in terms of modes of the array in a finite tank.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水波与矩形水箱中表面穿透垂直障碍物的相互作用:与布洛赫波和准模态的联系
研究了含有一个或多个垂直障碍物的充液矩形水箱的特征模态,其侧壁上规定了迪里夏特或诺伊曼边界条件。在水箱包含单个障碍物的情况下,水箱的几何形状等同于同周期阵列的单元格,其特征模态等同于驻波布洛赫波。研究表明,随着屏障浸没深度的增加,通带(即周期阵列支持布洛赫波的频率间隔)会变得更薄,频率越高,这种效应越强。研究还考虑了矩形水箱中均匀排列的垂直屏障的特征模。研究发现,它们是左传和右传布洛赫波的叠加,在水箱侧壁处耦合在一起。利用同调程序将特征模态与无限水平流体中同一均匀阵列的准模态联系起来,结果表明准模态控制着阵列对入射波的响应。同构法通常保留了模式形状的定性特征,这表明无限流体中阵列的共振响应可以用有限水箱中阵列的模式来理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
期刊最新文献
Dynamics of localized waves and interactions in a (2+1)-dimensional equation from combined bilinear forms of Kadomtsev–Petviashvili and extended shallow water wave equations Hamiltonian formulation for interfacial periodic waves propagating under an elastic sheet above stratified piecewise constant rotational flow Low mode interactions in water wave model in triangular domain Exotic coherent structures and their collisional dynamics in a (3+1) dimensional Bogoyavlensky–Konopelchenko equation Analytical and numerical study of plane progressive thermoacoustic shock waves in complex plasmas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1