Kui Liu , Yuhan Liu , Yangzhi Liu , Xinhua Huang , Yanhong Jia , Lizhu Ji , Shiping Tian , Tong Chen
{"title":"Suppression of ergosterol biosynthesis by dictamnine confers resistance to gray mold on harvested fruit","authors":"Kui Liu , Yuhan Liu , Yangzhi Liu , Xinhua Huang , Yanhong Jia , Lizhu Ji , Shiping Tian , Tong Chen","doi":"10.1016/j.fm.2024.104681","DOIUrl":null,"url":null,"abstract":"<div><div><em>Botrytis cinerea</em> is a major cause of postharvest rot in fresh fruits and vegetables worldwide. Consequently, the pursuit of environmentally friendly and efficient alternatives to fungicides has emerged as a hot spot of research. In this study, it was found that dictamnine (DIC, 4-methoxyfuro [2,3-β] quinoline), an active ingredient from <em>Dictamnus dasycarpus</em> Turcz, efficiently inhibited spore germination and mycelial growth of <em>B. cinerea</em>, alleviated the development of lesions caused by <em>B. cinerea</em> on postharvest apples, kiwifruits, cherry tomatoes and strawberries in a dose-dependent manner. RNA sequencing analysis followed by Gene Ontology (GO) term enrichment revealed that functional genes related to cell membrane function were significantly enriched, while most genes associated with ergosterol biosynthesis were down-regulated. Molecular docking indicated that DIC bound to the rate-limiting enzymes BcERG1 (squalene monooxygenase) and BcERG11 (Lanosterol 14-alpha demethylase) at −7.1 and −7.2 kcal mol<sup>−1</sup>, respectively. Additionally, it was observed that the application of DIC led to a decrease in ergosterol content, which compromised membrane integrity and normal membrane potential. Interestingly, exogenous ergosterol addition partially restored the inhibitory effect of DIC on the germination of <em>B. cinerea</em> spores and the lesion development on apple fruit. Taken together, these results indicate the potential for utilizing DIC as a promising antifungal substitute for controlling gray mold in postharvest fruit.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"127 ","pages":"Article 104681"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002024002193","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Botrytis cinerea is a major cause of postharvest rot in fresh fruits and vegetables worldwide. Consequently, the pursuit of environmentally friendly and efficient alternatives to fungicides has emerged as a hot spot of research. In this study, it was found that dictamnine (DIC, 4-methoxyfuro [2,3-β] quinoline), an active ingredient from Dictamnus dasycarpus Turcz, efficiently inhibited spore germination and mycelial growth of B. cinerea, alleviated the development of lesions caused by B. cinerea on postharvest apples, kiwifruits, cherry tomatoes and strawberries in a dose-dependent manner. RNA sequencing analysis followed by Gene Ontology (GO) term enrichment revealed that functional genes related to cell membrane function were significantly enriched, while most genes associated with ergosterol biosynthesis were down-regulated. Molecular docking indicated that DIC bound to the rate-limiting enzymes BcERG1 (squalene monooxygenase) and BcERG11 (Lanosterol 14-alpha demethylase) at −7.1 and −7.2 kcal mol−1, respectively. Additionally, it was observed that the application of DIC led to a decrease in ergosterol content, which compromised membrane integrity and normal membrane potential. Interestingly, exogenous ergosterol addition partially restored the inhibitory effect of DIC on the germination of B. cinerea spores and the lesion development on apple fruit. Taken together, these results indicate the potential for utilizing DIC as a promising antifungal substitute for controlling gray mold in postharvest fruit.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.