Numerical study of shell and tube thermal energy storage system: Enhancing solidification performance with single-walled carbon nanotubes in phase change material

Shan Ali Khan , Houssam Eddine Abdellatif , Ahmed Belaadi , Adeel Arshad , Haihu Liu
{"title":"Numerical study of shell and tube thermal energy storage system: Enhancing solidification performance with single-walled carbon nanotubes in phase change material","authors":"Shan Ali Khan ,&nbsp;Houssam Eddine Abdellatif ,&nbsp;Ahmed Belaadi ,&nbsp;Adeel Arshad ,&nbsp;Haihu Liu","doi":"10.1016/j.icheatmasstransfer.2024.108338","DOIUrl":null,"url":null,"abstract":"<div><div>The coupling of Organic Rankine Cycle (ORC) and Latent Heat Thermal Energy Storage (LHTES) is a novel strategy for efficiently using solar energy. The objective of this study is to explore the solidification performance of phase change material (PCM) with single-walled carbon nanotubes (SWCNTs) for thermal management in solar energy system. The evolution of temperature and liquid fraction during the solidification process is investigated across four cases: Case 01 without SWCNTs, and Cases 02, 03, and 04 with 2 %, 3 %, and 4 % SWCNTs dispersion, respectively. By analyzing the temperature and liquid fraction contours over time, the impact of SWCNTs concentration on thermal performance is assessed. Case 01 has a total solidification time of 14,400 s. In comparison, Case 02 achieves solidification in 13,600 s, Case 03 in 13,040 s, and Case 04 in 12,500 s, reflecting time savings of 5.55 %, 9.44 %, and 13.2 %, respectively. Additionally, Case 04 exhibits the highest sensible heat release of 527.9 kJ and a total heat energy release of 2851.09 kJ. The dimensionless TES rate <em>P′</em> for Case 04 is 1.26, indicating a 26 % improvement in thermal energy storage performance over the baseline. These findings underscore the effectiveness of SWCNTs-enhanced PCM in optimizing solar energy systems through enhanced heat transfer and accelerated solidification.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"160 ","pages":"Article 108338"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073519332401100X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The coupling of Organic Rankine Cycle (ORC) and Latent Heat Thermal Energy Storage (LHTES) is a novel strategy for efficiently using solar energy. The objective of this study is to explore the solidification performance of phase change material (PCM) with single-walled carbon nanotubes (SWCNTs) for thermal management in solar energy system. The evolution of temperature and liquid fraction during the solidification process is investigated across four cases: Case 01 without SWCNTs, and Cases 02, 03, and 04 with 2 %, 3 %, and 4 % SWCNTs dispersion, respectively. By analyzing the temperature and liquid fraction contours over time, the impact of SWCNTs concentration on thermal performance is assessed. Case 01 has a total solidification time of 14,400 s. In comparison, Case 02 achieves solidification in 13,600 s, Case 03 in 13,040 s, and Case 04 in 12,500 s, reflecting time savings of 5.55 %, 9.44 %, and 13.2 %, respectively. Additionally, Case 04 exhibits the highest sensible heat release of 527.9 kJ and a total heat energy release of 2851.09 kJ. The dimensionless TES rate P′ for Case 04 is 1.26, indicating a 26 % improvement in thermal energy storage performance over the baseline. These findings underscore the effectiveness of SWCNTs-enhanced PCM in optimizing solar energy systems through enhanced heat transfer and accelerated solidification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
管壳式热能储存系统的数值研究:利用相变材料中的单壁碳纳米管提高凝固性能
有机郎肯循环(ORC)与潜热蓄热(LHTES)的耦合是高效利用太阳能的一种新策略。本研究旨在探索单壁碳纳米管相变材料(PCM)的凝固性能,以用于太阳能系统的热管理。研究了四种情况下凝固过程中温度和液体成分的变化:情况 01 不含 SWCNT,情况 02、03 和 04 分别含有 2%、3% 和 4% 的 SWCNT。通过分析随时间变化的温度和液体分数等值线,评估了 SWCNTs 浓度对热性能的影响。相比之下,情况 02 的凝固时间为 13,600 秒,情况 03 为 13,040 秒,情况 04 为 12,500 秒,分别节省了 5.55 %、9.44 % 和 13.2 % 的时间。此外,实例 04 的显热释放量最高,为 527.9 千焦,总热能释放量为 2851.09 千焦。案例 04 的无量纲 TES 率 P′ 为 1.26,表明热能储存性能比基准提高了 26%。这些发现强调了增强型 SWCNT PCM 在通过增强传热和加速凝固来优化太阳能系统方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
期刊最新文献
Experimental and numerical study of turbulent fluid flow of jet impingement on a solid block in a confined duct with baffles Investigation of asymmetric heating in Poiseuille-Rayleigh-Bénard water flow: A numerical study Non-isothermal wicking in polymer sintered bead wicks: Experimentation, analytical solutions, and numerical validation Mechanistic model of wall heat transfer for vertical subcooled boiling flow Numerical research on geothermal energy extraction in backfilled mines by using the excellent heat transfer performance of loop heat pipe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1