Development of Land Use Regression (LUR) models and high-resolution spatial mapping of criteria air pollutants: Leveraging Delhi's continuous air monitoring network and remote sensing data
Pratyush Agrawal , Adithi R. Upadhya , Srishti S , Mahesh Kalshetty , Padmavati Kulkarni , Meenakshi Kushwaha , V. Sreekanth
{"title":"Development of Land Use Regression (LUR) models and high-resolution spatial mapping of criteria air pollutants: Leveraging Delhi's continuous air monitoring network and remote sensing data","authors":"Pratyush Agrawal , Adithi R. Upadhya , Srishti S , Mahesh Kalshetty , Padmavati Kulkarni , Meenakshi Kushwaha , V. Sreekanth","doi":"10.1016/j.jastp.2024.106385","DOIUrl":null,"url":null,"abstract":"<div><div>High-resolution air pollution maps can help researchers and governments better characterize and mitigate pollution levels in a given region. Land Use Regression (LUR) modeling is a statistical approach capable of predicting pollution levels at a high spatial resolution. In this study, we used pollution data (for the calendar year 2019) from a dense (compared to other Indian regions) regulatory monitoring network in Delhi, India, to develop simple linear and interpretable LUR models for various criteria pollutants. The observed annual mean PM<sub>2.5</sub> and PM<sub>10</sub> over Delhi were found to be ∼110 μg m<sup>−3</sup> and 220 μg m<sup>−3</sup>, respectively. The PM concentration levels were 2.5–4 times higher than the prescribed national ambient standards, while the gaseous criteria pollutants were found to be within the standards (over most of the study area). The performance of the developed LUR models ranged from poor to moderate levels (adjusted-R<sup>2</sup> values of the models were between 0.14 and 0.63). Land use and road-network related variables were found to be the most common predictors of the observed pollution levels. Moderately performing models (11 out of the developed 20) were then used to predict pollution levels at 50 m spatial intervals and to identify the most polluted districts. The advantages and limitations of using the existing regulatory network data for LUR development, and the other probable potential reasons responsible for the underperformance of the developed models are extensively discussed. To our knowledge, this is one of the few studies carried over Indian region to develop LUR models utilizing regulatory monitoring network data.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106385"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136468262400213X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution air pollution maps can help researchers and governments better characterize and mitigate pollution levels in a given region. Land Use Regression (LUR) modeling is a statistical approach capable of predicting pollution levels at a high spatial resolution. In this study, we used pollution data (for the calendar year 2019) from a dense (compared to other Indian regions) regulatory monitoring network in Delhi, India, to develop simple linear and interpretable LUR models for various criteria pollutants. The observed annual mean PM2.5 and PM10 over Delhi were found to be ∼110 μg m−3 and 220 μg m−3, respectively. The PM concentration levels were 2.5–4 times higher than the prescribed national ambient standards, while the gaseous criteria pollutants were found to be within the standards (over most of the study area). The performance of the developed LUR models ranged from poor to moderate levels (adjusted-R2 values of the models were between 0.14 and 0.63). Land use and road-network related variables were found to be the most common predictors of the observed pollution levels. Moderately performing models (11 out of the developed 20) were then used to predict pollution levels at 50 m spatial intervals and to identify the most polluted districts. The advantages and limitations of using the existing regulatory network data for LUR development, and the other probable potential reasons responsible for the underperformance of the developed models are extensively discussed. To our knowledge, this is one of the few studies carried over Indian region to develop LUR models utilizing regulatory monitoring network data.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.