{"title":"Enhancing Multi-Machine Power System Stability with STATCOM-SMES: A Soft Computing Approach","authors":"Sahil Kumar, Anil Kumar Dahiya","doi":"10.1016/j.compeleceng.2024.109878","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing complexity and increasing mismatch between supply and demand within modern power systems necessitate advanced methods for ensuring system stability and reliable operation. This article investigates the enhancement of transient stability in a multi-machine power system through the integration of Flexible AC Transmission Systems (FACTS) devices, specifically a Static Synchronous Compensator (STATCOM) combined with energy storage. Leveraging soft computing techniques such as Fuzzy Logic Controllers (FLC) and Artificial Neural Networks (ANN), this study evaluates the performance improvements in transient stability. The methodology involves modeling a multi-machine power system, implementing STATCOM-SMES configurations, and designing FLC and ANN controllers to dynamically support system stability. Simulations are conducted using MATLAB/Simulink, applying a three-phase to ground fault to assess the system's transient response. Performance metrics such as peak overshoot, settling time, and damping ratio are analyzed to compare the effectiveness of the proposed techniques. The results demonstrate significant improvements in transient stability with the application of FLC and ANN controlled STATCOM-SMES systems. This study underscores the potential of integrating soft computing techniques with FACTS devices to enhance the dynamic performance and resilience of power systems, contributing valuable insights for future research and practical applications in power system stability.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109878"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624008048","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing complexity and increasing mismatch between supply and demand within modern power systems necessitate advanced methods for ensuring system stability and reliable operation. This article investigates the enhancement of transient stability in a multi-machine power system through the integration of Flexible AC Transmission Systems (FACTS) devices, specifically a Static Synchronous Compensator (STATCOM) combined with energy storage. Leveraging soft computing techniques such as Fuzzy Logic Controllers (FLC) and Artificial Neural Networks (ANN), this study evaluates the performance improvements in transient stability. The methodology involves modeling a multi-machine power system, implementing STATCOM-SMES configurations, and designing FLC and ANN controllers to dynamically support system stability. Simulations are conducted using MATLAB/Simulink, applying a three-phase to ground fault to assess the system's transient response. Performance metrics such as peak overshoot, settling time, and damping ratio are analyzed to compare the effectiveness of the proposed techniques. The results demonstrate significant improvements in transient stability with the application of FLC and ANN controlled STATCOM-SMES systems. This study underscores the potential of integrating soft computing techniques with FACTS devices to enhance the dynamic performance and resilience of power systems, contributing valuable insights for future research and practical applications in power system stability.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.