Intelligent dynamic control of shield parameters using a hybrid algorithm and digital twin platform

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-11-22 DOI:10.1016/j.autcon.2024.105882
Yuan Cao , Shifan Li , Geoffrey Qiping Shen , Hongyu Chen , Yang Liu
{"title":"Intelligent dynamic control of shield parameters using a hybrid algorithm and digital twin platform","authors":"Yuan Cao ,&nbsp;Shifan Li ,&nbsp;Geoffrey Qiping Shen ,&nbsp;Hongyu Chen ,&nbsp;Yang Liu","doi":"10.1016/j.autcon.2024.105882","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a digital twin (DT) platform integrated with an online optimization algorithm that combines Bayesian Optimization (BO), Categorical Boosting (CatBoost), and the Nondominated Sorting Genetic Algorithm (NSGA)-III. The platform enables multi-objective dynamic optimization of shield parameters under varying geological conditions. Using the Wuhan Metro as a case study, the effectiveness of the method is validated. The results demonstrate that: (1) the DT model accurately estimates shield machine performance, with an R<sup>2</sup> of no less than 0.957 on the test set across three geological conditions; (2) the online optimization significantly enhances shield machine performance, with a comprehensive optimization improvement of over 25 % across all conditions; (3) comparison of the constructed algorithm's accuracy, along with Shapley additive explanations, confirms the accuracy, interpretability, and universality of the proposed algorithm.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"169 ","pages":"Article 105882"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524006186","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a digital twin (DT) platform integrated with an online optimization algorithm that combines Bayesian Optimization (BO), Categorical Boosting (CatBoost), and the Nondominated Sorting Genetic Algorithm (NSGA)-III. The platform enables multi-objective dynamic optimization of shield parameters under varying geological conditions. Using the Wuhan Metro as a case study, the effectiveness of the method is validated. The results demonstrate that: (1) the DT model accurately estimates shield machine performance, with an R2 of no less than 0.957 on the test set across three geological conditions; (2) the online optimization significantly enhances shield machine performance, with a comprehensive optimization improvement of over 25 % across all conditions; (3) comparison of the constructed algorithm's accuracy, along with Shapley additive explanations, confirms the accuracy, interpretability, and universality of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混合算法和数字孪生平台对盾构参数进行智能动态控制
本文介绍了一个数字孪生(DT)平台,该平台集成了贝叶斯优化(BO)、分类提升(CatBoost)和非优势排序遗传算法(NSGA)-III 的在线优化算法。该平台可在不同地质条件下对盾构参数进行多目标动态优化。以武汉地铁为例,验证了该方法的有效性。结果表明(1) DT 模型准确估计了盾构机性能,在三种地质条件下测试集的 R2 不小于 0.957;(2) 在线优化显著提高了盾构机性能,在所有条件下综合优化改进超过 25%;(3) 所构建算法的准确性与 Shapley 加解法的比较证实了所建议算法的准确性、可解释性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Delamination detection in concrete decks using numerical simulation and UAV-based infrared thermography with deep learning Automated reality capture for indoor inspection using BIM and a multi-sensor quadruped robot Egocentric-video-based construction quality supervision (EgoConQS): Application of automatic key activity queries Experimental study on in-situ mesh fabrication for reinforcing 3D-printed concrete Physics-guided deep learning for generative design of large-diameter tunnels under existing metro lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1