Jia-Bao Lu , Peng-Peng Ren , Ying Tian , Yan-Yan Yang , Qing-Kai Feng , Xiao-Ya Zhang , Fang He , Hai-Jian Huang , Jian-Ping Chen , Jun-Min Li , Chuan-Xi Zhang
{"title":"Structural characterization and proteomic profiling of oviposition secretions across three rice planthopper species","authors":"Jia-Bao Lu , Peng-Peng Ren , Ying Tian , Yan-Yan Yang , Qing-Kai Feng , Xiao-Ya Zhang , Fang He , Hai-Jian Huang , Jian-Ping Chen , Jun-Min Li , Chuan-Xi Zhang","doi":"10.1016/j.ibmb.2024.104220","DOIUrl":null,"url":null,"abstract":"<div><div>Insect oviposition secretions play crucial roles during the reproductive process, yet systematic studies on their structural characterization and protein compositions remain limited. This study investigated the oviposition secretions of three major rice pests: the brown planthopper (<em>Nilaparvata lugens</em>, BPH), small brown planthopper (<em>Laodelphax striatella</em>, SBPH), and white-backed planthopper (<em>Sogatella furcifera</em>, WBPH). Ultrastructural observation revealed differences in the oviposition secretions of them. The eggs of BPH and SBPH were adhered to rice tissue by abundant secretions, while WBPH eggs were embedded deeper within the leaf sheath with less secretions. Proteomic analysis identified 111, 98, and 66 oviposition secretion proteins (OSPs) in BPH, SBPH, and WBPH, respectively. 4 common protein subgroups were shared among them, along with varying numbers of shared subgroups between species pairs. Notably, the majority of OSPs were exclusively found in one species, indicating the existence of both similar and specialized functions unique to each planthopper species. The functions of 4 uncharacterized OSPs (Nl.chr07.0363, Nl.chr12.078, Nl.chr11.716, Nl.scaffold.0714) that were uniquely identified in the BPH were studied by maternal RNAi. Downregulation of each of these 4 protein-coding genes led to a significant decrease in egg production and hatchability. Moreover, knockdown of <em>Nl.chr12.078</em> or <em>Nl.chr07.0363</em> also disrupt the secretory function of the lateral oviduct. In conclusion, this study provides insights into the structural characteristics and protein components of the oviposition secretions of BPH, SBPH, and WBPH, which could serve as potential targets for RNAi-based pest control and lay a foundation for future studies on insect-plant interactions mediated by oviposition secretions.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"176 ","pages":"Article 104220"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824001516","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insect oviposition secretions play crucial roles during the reproductive process, yet systematic studies on their structural characterization and protein compositions remain limited. This study investigated the oviposition secretions of three major rice pests: the brown planthopper (Nilaparvata lugens, BPH), small brown planthopper (Laodelphax striatella, SBPH), and white-backed planthopper (Sogatella furcifera, WBPH). Ultrastructural observation revealed differences in the oviposition secretions of them. The eggs of BPH and SBPH were adhered to rice tissue by abundant secretions, while WBPH eggs were embedded deeper within the leaf sheath with less secretions. Proteomic analysis identified 111, 98, and 66 oviposition secretion proteins (OSPs) in BPH, SBPH, and WBPH, respectively. 4 common protein subgroups were shared among them, along with varying numbers of shared subgroups between species pairs. Notably, the majority of OSPs were exclusively found in one species, indicating the existence of both similar and specialized functions unique to each planthopper species. The functions of 4 uncharacterized OSPs (Nl.chr07.0363, Nl.chr12.078, Nl.chr11.716, Nl.scaffold.0714) that were uniquely identified in the BPH were studied by maternal RNAi. Downregulation of each of these 4 protein-coding genes led to a significant decrease in egg production and hatchability. Moreover, knockdown of Nl.chr12.078 or Nl.chr07.0363 also disrupt the secretory function of the lateral oviduct. In conclusion, this study provides insights into the structural characteristics and protein components of the oviposition secretions of BPH, SBPH, and WBPH, which could serve as potential targets for RNAi-based pest control and lay a foundation for future studies on insect-plant interactions mediated by oviposition secretions.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.