{"title":"Going deeper on magneto-optical Faraday effect analysis to detect fatigue crack with high-spatial resolution for non-destructive inspection","authors":"I Dewa Made Oka Dharmawan , Jinyi Lee","doi":"10.1016/j.ndteint.2024.103277","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we introduce a high-resolution technique for defect detection that uses the magneto–optical (MO) Faraday effect. Our system combines a portable polarized microscope and an MO sensor for the high spatial observation of a magnetic domain structure. We accurately localized and characterized the fatigue defects through integrated image pre-processing and cross-power spectral density analysis. This approach enhances our analysis of the magnetic domain structure, increasing the spatial capabilities of the microscope to detect fatigue defects. We conducted experiments on fatigue cracks with defect depth angles of 0°, 30°, and 60°, analyzing their relationship through signal amplitude and the tendency of the signal shift with increasing defect angle. Our findings were validated using a tunnel magnetoresistance sensor. Future research will focus on the optimization of feature extraction complexity, considering the limited computational power available for portable non-destructive testing devices.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"150 ","pages":"Article 103277"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002421","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we introduce a high-resolution technique for defect detection that uses the magneto–optical (MO) Faraday effect. Our system combines a portable polarized microscope and an MO sensor for the high spatial observation of a magnetic domain structure. We accurately localized and characterized the fatigue defects through integrated image pre-processing and cross-power spectral density analysis. This approach enhances our analysis of the magnetic domain structure, increasing the spatial capabilities of the microscope to detect fatigue defects. We conducted experiments on fatigue cracks with defect depth angles of 0°, 30°, and 60°, analyzing their relationship through signal amplitude and the tendency of the signal shift with increasing defect angle. Our findings were validated using a tunnel magnetoresistance sensor. Future research will focus on the optimization of feature extraction complexity, considering the limited computational power available for portable non-destructive testing devices.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.