Jiabin Shi , Haibao Lu , Tengfei Zheng , Yong-Qing Fu
{"title":"A dynamic entanglement model for adaptive networks in amorphous polymers with pH-responsive dual-shape memory effect","authors":"Jiabin Shi , Haibao Lu , Tengfei Zheng , Yong-Qing Fu","doi":"10.1016/j.giant.2024.100347","DOIUrl":null,"url":null,"abstract":"<div><div>The pH-responsive shape memory polymers (pH-SMPs) have recently attracted significant attention due to their unique and spontaneous actuation capabilities. However, there are few constitutive models developed to explore the working principles behind these complex shape memory behaviors. In this study, a dynamic entanglement model was developed for describing the pH-responsive shape memory effect (SME) in SMPs, in which the crosslinking points in polymer networks underwent reversible entanglements and disentanglements. Susceptible-Infected-Susceptible (SIS) model was firstly employed to formulate an entanglement probability function, which was used to identify the working principles for entanglements of polymer networks and shape recovery of the pH-SMPs. An entanglement free-energy function was further formulated to characterize the pH-responsive dual-SMEs based on the Flory-Huggins solution theory. Phase transition theory was then used to characterize glass transition behaviors and recovery strains of the pH-SMPs, by combining Gordon-Taylor and Kohlrausch-Williams-Watts (KWW) equations. Finally, the proposed model was verified using experimental results reported in the literature. This study provides a fundamental approach to explore the working principle and constitutive relationship between reversible entanglement and pH-responsive SME in SMPs.</div></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"21 ","pages":"Article 100347"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524001115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The pH-responsive shape memory polymers (pH-SMPs) have recently attracted significant attention due to their unique and spontaneous actuation capabilities. However, there are few constitutive models developed to explore the working principles behind these complex shape memory behaviors. In this study, a dynamic entanglement model was developed for describing the pH-responsive shape memory effect (SME) in SMPs, in which the crosslinking points in polymer networks underwent reversible entanglements and disentanglements. Susceptible-Infected-Susceptible (SIS) model was firstly employed to formulate an entanglement probability function, which was used to identify the working principles for entanglements of polymer networks and shape recovery of the pH-SMPs. An entanglement free-energy function was further formulated to characterize the pH-responsive dual-SMEs based on the Flory-Huggins solution theory. Phase transition theory was then used to characterize glass transition behaviors and recovery strains of the pH-SMPs, by combining Gordon-Taylor and Kohlrausch-Williams-Watts (KWW) equations. Finally, the proposed model was verified using experimental results reported in the literature. This study provides a fundamental approach to explore the working principle and constitutive relationship between reversible entanglement and pH-responsive SME in SMPs.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.