Numerical simulation of core shell dual metal gate stack junctionless accumulation mode nanowire FET (CS-DM-GS-JAMNWFET) for low power digital applications

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-10-24 DOI:10.1016/j.micrna.2024.207995
Anupama , Sonam Rewari , Neeta Pandey
{"title":"Numerical simulation of core shell dual metal gate stack junctionless accumulation mode nanowire FET (CS-DM-GS-JAMNWFET) for low power digital applications","authors":"Anupama ,&nbsp;Sonam Rewari ,&nbsp;Neeta Pandey","doi":"10.1016/j.micrna.2024.207995","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, Core Shell Dual Metal Gate Stack Junctionless Accumulation Mode Nanowire FET (CS-DM-GS-JAMNWFET) is proposed, which has enhanced performance and is suitable for analog and digital applications. A high-k gate stack engineering, Hafnium Oxide (HfO<sub>2</sub>) is deployed in the outer as well as inner gate oxides of the core shell structure. The proposed device is compared with CS-DM-JAMNWFET, CS-SM-JAMNWFET, DM-GS-JAMNWFET, DM-JAMNWFET, and SM-JAMNWFET by maintaining a constant threshold voltage for all structures. The proposed CS-DM-GS-JAMNWFET provides a substantial reduction in subthreshold current with a high I<sub>on</sub>/I<sub>off</sub> ratio as compared to other competent device structures. Also, the proposed device exhibits improvements in various parameters compared to the SM-JAMNWFET. It shows improvement in drain current (2.27 times), output conductance (2.14 times), subthreshold swing (0.94 times), transconductance (2.47 times), gate capacitance (2.00 times), cut-off frequency (1.24 times), intrinsic gain (12.95 times), current gain (1.46), I<sub>on</sub>/I<sub>off</sub> ratio (6.15 times), unilateral power gain (1.09 times), maximum transducer power gain (1.08 times), Transconductance Generation factor (1.08 times), gain frequency product (14.61 times), transconductance frequency product (1.32 times), and gain transconductance frequency product (17.27 times). These benefits are due to combined advantages of the dual metal high-k dielectric HfO<sub>2</sub> structure in core shell JAM FET, which enhances the device's gate dominance over the channel with high driving current.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"196 ","pages":"Article 207995"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, Core Shell Dual Metal Gate Stack Junctionless Accumulation Mode Nanowire FET (CS-DM-GS-JAMNWFET) is proposed, which has enhanced performance and is suitable for analog and digital applications. A high-k gate stack engineering, Hafnium Oxide (HfO2) is deployed in the outer as well as inner gate oxides of the core shell structure. The proposed device is compared with CS-DM-JAMNWFET, CS-SM-JAMNWFET, DM-GS-JAMNWFET, DM-JAMNWFET, and SM-JAMNWFET by maintaining a constant threshold voltage for all structures. The proposed CS-DM-GS-JAMNWFET provides a substantial reduction in subthreshold current with a high Ion/Ioff ratio as compared to other competent device structures. Also, the proposed device exhibits improvements in various parameters compared to the SM-JAMNWFET. It shows improvement in drain current (2.27 times), output conductance (2.14 times), subthreshold swing (0.94 times), transconductance (2.47 times), gate capacitance (2.00 times), cut-off frequency (1.24 times), intrinsic gain (12.95 times), current gain (1.46), Ion/Ioff ratio (6.15 times), unilateral power gain (1.09 times), maximum transducer power gain (1.08 times), Transconductance Generation factor (1.08 times), gain frequency product (14.61 times), transconductance frequency product (1.32 times), and gain transconductance frequency product (17.27 times). These benefits are due to combined advantages of the dual metal high-k dielectric HfO2 structure in core shell JAM FET, which enhances the device's gate dominance over the channel with high driving current.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低功耗数字应用的芯壳双金属栅极堆叠无结累加模式纳米线场效应晶体管(CS-DM-GS-JAMNWFET)的数值模拟
本文提出的芯壳双金属栅极堆叠无结累积模式纳米线场效应晶体管(CS-DM-GS-JAMNWFET)性能更强,适用于模拟和数字应用。在芯壳结构的外部和内部栅极氧化物中采用了高 K 值栅极叠层工程--氧化铪(HfO2)。通过保持所有结构的阈值电压恒定,将所提出的器件与 CS-DM-JAMNWFET、CS-SM-JAMNWFET、DM-GS-JAMNWFET、DM-JAMNWFET 和 SM-JAMNWFET 进行了比较。与其他合格的器件结构相比,拟议的 CS-DM-GS-JAMNWFET 以高离子/关断比大幅降低了亚阈值电流。此外,与 SM-JAMNWFET 相比,所提出的器件在各种参数上都有所改进。它在漏极电流(2.27 倍)、输出电导(2.14 倍)、阈下摆动(0.94 倍)、跨电导(2.47 倍)、栅极电容(2.00 倍)、截止频率(1.24 倍)、本征增益(12.95 倍)、电流增益(1.46 倍)、离子/关断比(6.15 倍)、单边功率增益(1.09 倍)、最大换能器功率增益(1.08 倍)、跨导生成系数(1.08 倍)、增益频率乘积(14.61 倍)、跨导频率乘积(1.32 倍)和增益跨导频率乘积(17.27 倍)。这些优势归功于芯壳 JAM FET 中双金属高介电 HfO2 结构的综合优势,它增强了器件在高驱动电流下栅极对沟道的主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Research on RF performance of GaN HEMT with graded Al composition AlGaN back-barrier Corrigendum to “Evaluation of sensitivity in a vertically misaligned double-gate electrolyte-insulator-semiconductor extended source tunnel FET as pH sensor” [Micro Nanostruct. 196 (2024) 208005] The impact of barrier modulation on carriers transport in GaN quantum well infrared detectors Interference enhanced SPR-mediated visible-light responsive photocatalysis of periodically ordered ZnO nanorod arrays decorated with Au nanoparticles Optimization of efficiency of CsPbI2Br by using different electron transport and hole transport layers: A DFT and SCAPS-1D simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1